Effect of Head Position on Cerebrospinal Fluid Pressure in Cats: Comparison with Artificial Model

Klarica, Marijan and Radoš, Milan and Draganić, Pero and Erceg, Gorislav and Orešković, Darko and Maraković, Jurica and Bulat, Marin (2006) Effect of Head Position on Cerebrospinal Fluid Pressure in Cats: Comparison with Artificial Model. Croatian Medical Journal, 47 (2). pp. 233-238. ISSN 0353-9504 (Print) 1332-8166 (Electronic)

[img]
Preview
PDF
Download (610kB) | Preview
Official URL: http://www.cmj.hr/

Abstract

Aim: To demonstrate that changes in the cerebrospinal fluid (CSF) pressure in the cranial cavity and spinal canal after head elevation from the horizontal level occur primarily due to the biophysical characteristics of the CSF system, ie, distensibility of the spinal dura. ----- Methods: Experiments in vivo were performed on cats and a new artificial model of the CSF system with dimensions similar to the CSF system in cats, consisting of non-distensible cranial and distensible spinal part. Measurements of the CSF pressure in the cranial and spinal spaces were performed in chloralose-anesthetized cats (n = 10) in the horizontal position on the base of a stereotaxic apparatus (reference zero point) and in the position in which the head was elevated to 5 cm and 10 cm above that horizontal position. Changes in the CSF pressure in the cranial and spinal part of the model were measured in the cranial part positioned in the same way as the head in cats (n = 5). ----- Results: When the cat was in the horizontal position, the values of the CSF pressure in the cranial (11.9 ± 1.1 cm H2O) and spinal (11.8 ± 0.6 cm H2O) space were not significantly different. When the head was elevated 5 cm or 10 cm above the reference zero point, the CSF pressure in the cranium significantly decreased to 7.7 ± 0.6 cm H2O and 4.7 ± 0.7 cm H2O, respectively, while the CSF pressure in the spinal space significantly increased to 13.8 ± 0.7 cm H2O and 18.5 ± 1.6 cm H2O, respectively (P<0.001 for both). When the artificial CSF model was positioned in the horizontal level and its cranial part elevated by 5 cm and 10 cm, the changes in the pressure were the same as those in the cats when in the same hydrostatic position. ------ Conclusions: The new model of the CSF system used in our study faithfully mimicked the changes in the CSF pressure in cats during head elevation in relation to the body. Changes in the pressure in the model were not accompanied by the changes in fluid volume in the non-distensible cranial part of the model. Thus, it seems that the changes in the CSF pressure occur due to the biophysical characteristics of the CSF system rather than the displacement of the blood and CSF volumes from the cranium to the lower part of body.

Item Type: Article
MeSH: Cerebrospinal Fluid Pressure - physiology ; Head ; Models, Neurological ; Posture - physiology ; Animals ; Cats ; Comparative Study ; Female ; Models, Structural
Departments: Katedra za farmakologiju
Depositing User: Lea Škorić
Status: Published
Creators:
CreatorsEmail
Klarica, MarijanUNSPECIFIED
Radoš, MilanUNSPECIFIED
Draganić, PeroUNSPECIFIED
Erceg, GorislavUNSPECIFIED
Orešković, DarkoUNSPECIFIED
Maraković, JuricaUNSPECIFIED
Bulat, MarinUNSPECIFIED
Date: April 2006
Date Deposited: 11 Dec 2006
Last Modified: 23 Sep 2011 16:09
Subjects: /
Related URLs:
    URI: http://medlib.mef.hr/id/eprint/55

    Actions (login required)

    View Item View Item

    Downloads

    Downloads per month over past year