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SUMMARY 
 
A growing body of evidence implicates impairments in brain insulin signaling in early 
sporadic Alzheimer disease (sAD) pathology. However, the most widely accepted 
hypothesis for AD aetiology stipulates that pathological aggregations of the amyloid β 
(Aβ) peptide are the cause of all forms of Alzheimer’s disease. Streptozotocin-
intracerebroventricularly (STZ-icv) treated rats are proposed as a probable experimental 
model of sAD. The current work reviews evidence obtained from this model indicating that  
central STZ administration induces brain pathology and behavioural alterations resembling 
those in sAD patients. Recently, alterations of the brain insulin system resembling those in 
sAD have been found in the STZ-icv rat model and are associated with tau protein 
hyperphosphorylation and Aβ-like aggregations in meningeal vessels. In line with these 
findings the hypothesis has been proposed that insulin resistance in the brain might be the 
primary event which precedes the Aβ pathology in sAD.  
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INTRODUCTION 
 
Although neuropathologically Alzheimer's disease (AD) is characterized by the 
accumulation of extracellular plaques, consisting primarily of a low molecular weight 
amyloid-β (Aβ) peptide, and intracellular neurofibrillary tangles of aggregated 
hyperphosphorylated tau protein, it is well documented that AD is not a single entity. 
Currently, the leading hypothesis assumes that pathological assemblies of Aβ are the cause 
of all forms of AD, whereas other neuropathological changes, including tau 
hyperphosphorylation, are downstream consequences of pathological Aβ accumulation 
(Hardy and Selkoe, 2002). However, the amyloid cascade hypothesis is consistent with 
only a very small proportion of all AD cases, that is those caused by missense mutations in 
three chromosomes (http://www.molgen.ua.ac.be/ADMutations/) leading to autosomal 
dominant familial AD with an early onset. In the great majority of AD patients disease is 
sporadic in origin (millions world-wide) with age and several susceptibility genes as risk 
factors, and is of late onset (Hoyer and Frölich, 2006). A growing body of evidence 
implicates impairments in the brain insulin signaling pathway in sAD pathology (Frölich et 
al, 1998; Hoyer, 1998; Hoyer and Frölich, 2006, de la Monte and Wands, 2005). Since 
insulin has been shown to affect both Aβ levels and tau hyperphosphorylation in the brain, 
this issue has recently emerged as a novel field of sAD ethiopathogenesis and therapy 
research (de la Monte et al., 2006; Hoyer, 2004). Due to the developmentally specific 
nature of sAD, its early stages being clinically unrecognisable, and brain analysis being 
possible only post mortem (frequently in only the severe late stage cases), brain 
neurochemistry that characterizes the initiation of this disease in humans is mostly 
unknown. Experimental models of sAD may provide clues to early brain changes in this 
disorder. This review presents the information gained to date in the experimental rat model 
of sAD which has paved the way to the new hypothesis, the implications of which may 
provide novel ethiopathogenic and therapeutic approaches in sAD research. 
 
INSULIN IN THE BRAIN 
 
Until the last three decades, the brain has not been thought of as an insulin-sensitive organ. 
The first evidence arguing against this hypothesis was the detection of immunoreactive 
insulin in dog cerebrospinal fluid (Margolis and Altszuler, 1967), suggesting that 
circulating insulin could cross the blood-brain barrier. The discoveries of insulin and 
insulin receptors (IR) in the brain that followed (Havrankova et al, 1978a,b) raised further 
questions about the origin of insulin in the brain, as well as physiological and 
pathophysiological role(s) of insulin and IR in this organ. An extensive review of the 
current knowledge of insulin and IR and their roles in the brain has been published 
previously (Hoyer and Frölich, 2006), and will be presented briefly here for the purpose of 
comparison with the data from human and experimental models of sAD. 
 
It is a common belief that in the mature adult brain the majority of insulin originates from 
the periphery; that is it is transported from the circulation after secretion from the 
pancreatic β-cells. The transport of insulin across the blood brain barrier (BBB) is 
mediated via a saturable transport mechanism for which regional specificity in transporter 
distribution and kinetics has been reported (Banks, 2004). However, evidence has emerged 
that a smaller proportion of insulin is produced within the brain itself (Wozniak et al., 
1993). Insulin gene expression and insulin synthesis have been demonstrated in both 
immature and mature mammalian neuronal cells (Schechter et al. 1992; Schechter et al. 
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1996; Schechter and Abboud 2001). In humans and in the chicken only one insulin gene is 
present, whereas in mice and rats insulin is produced by two independent genes that code 
for proinsulin I and II, both of which are localized to chromosome 1 (Todd et al. 1985). 
Insulin-1 and -2 mRNA were found to be distributed in a highly specific pattern with the 
highest density in the pyramidal cells of the hippocampus and high densities in medial 
prefrontal cortex, the entorhinal and perirhinal cortices, the thalamus and the granule layer 
of the olfactory bulb, as well as the hypothalamus (Devaskar et al., 1994; Grünblatt et al., 
2006). Neither insulin mRNA nor synthesis of the hormone were observed in glial cells 
(Devaskar et al. 1994). The release of insulin from brain synaptosomes is stimulated by 
glucose (Santos et al. 1999).  
 
Insulin signaling in the brain 
 
Insulin in the brain binds to IRs which are abundantly but selectively distributed. Rodent 
studies have shown that the highest concentration of IRs is found in the nerve terminals of 
key brain regions, such as the olfactory bulb, hypothalamus, cerebral cortex, cerebellum 
and hippocampus (van Houten et al, 1979; van Houten et al, 1980; Unger et al, 1989; 
Abbott et al, 1999). IR mRNA is abundantly present in neuronal somata (Schwartz et al, 
1992). The neuronal IR binds insulin in a highly specific and rapid manner (Raizada et al, 
1988). It has been hypothesized that the differing distribution patterns of insulin-1 and IRs 
in the brain may suggest that IRs in different brain regions may use insulin from different 
sources, either peripherally or locally synthesized, for cell-to-cell communication and 
neuronal signal transduction (Zhao et al. 2004). The IR is a tetramer composed of two 
extracellular α-subunits and two intracellular β-subunits. The neuronal (brain) IR differs 
from the peripheral IR in that both the α and β subunits have a slightly lower molecular 
weight, and the neuronal IR is not down-regulated by insulin, which otherwise activates a 
similar signalling cascade (Adamo et al, 1989; Heidenreich et al, 1983). Binding of insulin 
to the IR -subunit induces autophosphorylation of the -subunit by phosphorylation of its 
intrinsic tyrosine residues 1158, 1162 and 1163, thus triggering  tyrosine kinase activity 
(Fig. 1A) (Combettes-Souverain and Issad, 1998). The location of phosphotyrosine-
containing proteins corresponds to IR distribution (Moss et al, 1990). The receptor’s 
activation state is regulated by its phosphorylation state. Deactivation may be induced by 
the action of both phosphotyrosine phosphatase causing dephosphorylation of the β subunit 
(Goldstein, 1993) and by serine or threonine kinases causing phosphorylation at serine 
residues 1305 and 1306, and threonine residue 1348 respectively (Häring, 1991; Avruch, 
1998). Insulin binding to the IR activates two parallel functional signal transduction 
cascades; one acting through the phosphatidylinositol-3 kinase (PI3K) pathway, and the 
other acting through the mitogen activated protein kinase (MAPK) pathway (Johnston et 
al., 2003). The former will be discussed later in the text. Briefly, tyrosine phosphorylation 
of IR β-subunits induces specific recruitment of proteins containing particular domains 
(SH2, PTB, etc.), amongst the most prominent of which are the proteins from the insulin 
receptor substrate family (IRS). It has been shown that IRS1 and the IR are co-expressed in 
particular brain regions, including the hippocampus (Baskin et al, 1994). Upon IR 
activation, the IRS becomes phosphorylated on tyrosine residues and capable of recruiting 
various specific (e.g. SH2) domain-containing signalling molecules; among them PI3K 
which becomes phosphorylated and consequently activated (Johnston et al., 2003). The 
activation of the PI3K pathway, in turn activates protein kinase B (Akt/PKB) (Fig. 1). The 
activated Akt/PKB triggers glucose transporter (such as GLUT4) translocation and 
consequently increases cellular glucose uptake (Johnston et al., 2003; Vannucci et al., 
1998). Akt/PKB also phosphorylates (at the serine 9 residue) and consequently inactivates 
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both α and β cytosolic forms of glycogen synthase kinase-3 (GSK-3) (Cross et al., 1995). 
GSK-3 plays a key role in numerous cell functions, but only those that may be involved in 
sAD pathology will be briefly mentioned here. GSK-3α regulates the production of Aß 
peptides, the amyloid precursor protein (APP) derivatives (Phiel et al, 2003). The 
promotion of APP secretion from the intracellular to the extracellular space and the 
inhibition of its degradation by insulin-degrading enzyme is mediated by insulin and the 
tyrosine kinase activity of the IR (Gasparini et al, 2001). Furthermore, insulin signaling via 
activation of PI3K regulates APP release into the extracellular space (Solano et al, 2000). 
GSK-3β isoform is involved in tau-protein phosphorylation (Ishiguro et al., 1993). Tau-
proteins belong to a family of microtubule-associated proteins that stimulate the generation 
and stabilization of microtubules within cells, and control axonal transport of vesicles 
(Stamer et al., 2002). Accumulation of hyperphosphorylated tau protein leads to the 
formation of neurofibrillary tangles. The phosphorylation and dephosphorylation of the tau 
protein is regulated by several protein kinases, including GSK-3β, and by several protein 
phosphatases, including PTP-1, -2A, -2B (Ishiguro et al, 1992; 1993). Prolonged exposure 
to insulin has been shown to induce down-regulation of glycogen synthase kinase-3ß 
activity and, thus, decreased phosphorylation of tau-protein (Cross et al, 1997; Hong and 
Lee, 1997).  
 
Insulin's role in learning and memory 
 
Evidence has been provided that brain insulin and the IR are functionally linked to 
improved cognition, in particular general and spatial memory, by up-regulation of insulin 
mRNA in the hippocampus and increased accumulation of the IR in hippocampal synaptic 
membranes (Zhao et al, 1999; for review Park, 2001; Zhao et al, 2004). Recent in vivo 
evidence has demonstrated that the effect of intrahippocampal microinjection of insulin on 
spatial learning and memory in rats is dose-dependent, that is cognitive function is 
impaired with low insulin doses, unchanged with intermediate doses, and improved with 
high insulin doses (Moosavi et al, 2006). Although the exact mechanism(s) by which 
insulin could affect learning and memory is unclear, several pathways have been 
suggested, for example those related to glucose metabolism and the modulation of 
neurotransmission by different neurotransmitters. The overlapping distributions of insulin, 
the IR and the insulin-sensitive glucose transporter (GLUT) isoforms support the 
hypothesis of insulin-stimulated glucose uptake in selective brain regions, the 
hippocampus in particular (Apelt et al, 1999; McEwen and Reagan, 2004). Since 
hippocampal glucoregulatory activities contribute to cognitive function (Reagan, 2002), 
insulin modulation of glucose metabolism in this structure appears to be one of the key 
components of hippocampal vulnerability. Additionally, insulin is likely to modulate 
memory via other molecular events, such as increasing the probability of inducing long-
term amplification, a molecular model of learning, by promoting N-methyl-D-aspartate 
receptor conductance (Wang and Salter, 1994), as reviewed elsewhere (van der Heide et al, 
2006). Insulin may also modulate cognitive functions via its effects on neurotransmission, 
e.g. low doses of insulin can reverse the amnestic effects of cholinergic blockade 
(Blanchard and Duncan, 1997), and high levels of insulin reduce neuronal norepinephrine 
reuptake (Figlewicz et al, 1993). Thus the data suggests that normal insulin and IR 
signaling is a prerequisite for normal learning and memory function.  
 
AN EXPERIMENTAL RAT MODEL OF sAD: STREPTOZOTOCIN-
INTRACEREBROVENTRICULARLY TREATED RATS 
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Given the complex nature of AD, it is difficult to establish an experimental animal model 
that would faithfully mimic the developmental pathology of this disease in humans. 
Frequently exploited are transgenic Tg2576 mice that over express the Swedish mutation 
of the human APP and demonstrate a progressive, age-related cortical and hippocampal 
deposition of Aβ plaques (Hsiao et al, 1996). Transgenic Tg2576 mice however, represent 
a model of AD induced by gene manipulation, and therefore, are unlikely to be 
representative of the sporadic type of this disease. Given the presence of the IR and insulin, 
as well as the possibility of its synthesis in the brain, and of disturbed insulin signal 
transduction in human sAD (Hoyer and Frölich, 2006), an experimental rat model was 
developed by using the drug streptozotocin (STZ).  
 
STZ treatment 
 
STZ (2-deoxy-2-(3-(methyl-3-nitrosoureido)-D-glucopyranose)) is a betacytotoxic drug 
which, following peripheral (parenteral) administration at high doses, selectively destroys 
insulin producing/secreting β cells in the pancreas, and causes type I diabetes mellitus in 
adult animals (Szkudelski, 2001). Type II diabetes can also be induced in rats by parenteral 
injections of STZ on the day of birth, resulting in a mild basal hyperglycemia, an impaired 
response to the glucose tolerance test, and a loss of β GSK-3 plays a key role in numerous 
cell functions, but only those that may be involved in cell sensitivity to glucose, 10 weeks 
post-injection (Szkudelski, 2001). Treatment with low to moderate doses of STZ in short-
term experiments causes insulin resistance (Blondel and Portha 1989) via a decrease in 
autophosphorylation (Kadowaki et al. 1984) and an increase in total number of IRs, but 
with little change in phosphorylated IR- subunit (Giorgino et al. 1992), and maintained 
insulin-immunoreactive cells in the pancreas generating a transient diabetes mellitus 
(Rajab et al. 1989; Ar'Rajab and Ahren 1993). Considering the presence of insulin (from 
both periphery and brain) and IRs in the brain, an experimental rat model was developed 
by using STZ applied intracerebroventricularly (icv) in doses of up to 100 times lower (per 
kg body weight /b.w./) than those used peripherally to induce an insulin resistant brain 
state (Nitsch and Hoyer, 1991; Duelli et al, 1994; Lannert and Hoyer, 1998). Central STZ 
administration caused neither systemic metabolic changes nor diabetes mellitus. In the past 
17 years, since the first literature report of central STZ application, STZ has been 
administrated mostly in doses ranging from 1-3 mg/kg b.w., injected 1-3 times, either uni-
or bi-laterally into the lateral cerebral ventricles (Table 1). Identical biochemical changes 
were found in the left and right striatum after administration of STZ to the right lateral 
cerebral ventricle only (Salkovic et al., 1995), suggesting that STZ-icv induced effects are 
not related to the direct non-specific toxic effect of STZ at the site of drug administration 
and that differing effects following uni- or bi-lateral application of STZ are not to be 
expected. In some of the experiments however, a wide variation in the susceptibility of 
individual animals has been demonstrated as a characteristic feature of STZ-icv treatment 
(Blokland and Joles, 1993; 1994; Prickaerts et al., 2000). Most experiments with STZ-icv 
applications used Wistar rats, with only a few utilising the Sprague-Dawley (Shoham et al., 
2006) or Lewis strains (Prickaerts et al., 2000). Male animals were used in all experiments. 
Recently, bilateral intra-cortical administration of low STZ doses (40 μg/kg) to three-day-
old rat pups has been reported (Lester-Coll et al., 2006; de la Monte et al., 2006).  
 
STZ mechanism of action 
 
The mechanism of central STZ action and its target cells/molecules have not yet been 
clarified but a similar mechanism of action to that in the periphery has been recently 
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suggested. In the periphery, STZ selective β cell toxicity results from the drug’s chemical 
structure which allows it to enter the cell via the GLUT2 glucose transporter. The 
predominant site of GLUT2 localization is the pancreatic β cell membrane (Szkudelski, 
2001). In vitro studies have also demonstrated that GLUT2 itself is a key target molecule 
for STZ as the drug reduces GLUT2 protein expression in a concentration-dependent 
manner (Gai et al, 2004). GLUT2 may also be responsible for the STZ induced effects in 
the brain as GLUT2 also is reported to have regional specific distribution in the 
mammalian brain (Brant et al, 1993; Leloup et al, 1994; Ngarmukos et al, 2001; Arluison 
et al, 2004a; Arluison et al, 2004b). The neuronal localization of GLUT2 is relatively 
similar to that of glucokinase (GLUT2 coupled with glucokinase participate in the glucose 
sensing mechanism of β-cells), supporting the hypothesis that GLUT2 is expressed by 
brain neurons involved in glucose sensing (Arluison et al, 2004a; Arluison et al, 2004b). 
However, since GLUT2 localization in the brain does not entirely parallel that of 
glucokinase at the quantitative level (Li et al. 2003), participation of GLUT2 in functions 
other than glucose sensing in the brain has been suggested (Arluison et al. 2004b; Arluison 
et al. 2004a). Following peripheral administration STZ causes alkylation of β-cell DNA 
which triggers activation of poly ADP-ribosylation, leading to depletion of cellular NAD+ 
and ATP (Szkudelski, 2001). Decreased levels of ATP have also been reported following  
STZ-icv treatment (Nitsch and Hoyer 1991; Lannert and Hoyer 1998). The chemical 
structure of STZ also suggests this compound may produce intracellular free radicals, nitric 
oxide (NO) and hydrogen peroxide (Szkudelski, 2001); indeed evidence of increased 
oxidative stress has been found in the brain of STZ-icv treated rats (Table 1). Possible STZ 
effects on insulin producing/secreting and insulin sensitive cells within the brain will be 
discussed later in the text. The exact intracellular effects stimulated by icv administration 
of STZ are likely to be elucidated only following identification of the brain cells targeted 
by this compound.  
 
NEUROCHEMICAL, STRUCTURAL AND BEHAVIORAL CHANGES IN THE 
STZ-ICV RAT MODEL 
 
Glucose/energy metabolism 
 
Glucose is the principal source of energy production in the brain, and undisturbed glucose 
metabolism is critical for normal functioning of this organ. Brain glucose, and its 
metabolism, has been investigated from 3 weeks following STZ-icv administration (Table 
1), where concentrations of glucose and ADP, as well as glycogen levels, were increased in 
the cerebral cortex (Nitsch and Hoyer 1991), and glucose utilization was significantly 
decreased (44%) (Pathan et al, 2006). Further, 6 weeks following STZ-icv treatment, 
reduced glucose utilization (up to 30%) was found in 17 of 35 brain areas, particularly  the 
frontal, parietal, sensory motor, auditory and entorhinal cortex and in all hippocampal 
subfields (Duelli et al. 1994). In addition, significant decreases in activities of glycolytic 
key enzymes were found in the brain cortex and hippocampus 3 and 6 weeks post- STZ-icv 
administration (Plaschke and Hoyer 1993) resulting in diminished concentrations of the 
energy-rich compounds ATP and creatine phosphate (Nitsch and Hoyer 1991; Lannert and 
Hoyer 1998). This fall in cerebral ATP, GTP and creatine phosphate levels was 
significantly improved by 40-day subcutaneous treatment with estradiol or intraperitoneal 
injection with the antioxidant coenzyme Q10, in parallel with the initial administration of 
STZ (Lannert et al., 1998; Ishrat et la., 2006). Decreased glucose utilization in 
hippocampal and cortical tissue was significantly, and dose-dependently, increased by 2-
week long oral treatment with the peroxisome proliferator activated γ receptor (PPARγ) 
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agonist, pioglitazone, applied from 5 days before to 9 days after the STZ-icv treatment 
(Pathan et al., 2006). PPARγ agonists are approved as oral hypoglycemic agents used in 
the treatment of insulin resistance in type 2 diabetes, but have also demonstrated some 
neuroprotective effects (Santos et al., 2005; Bordet et al., 2006). 
 
Cholinergic transmission 
 
Investigations of cholinergic transmission in STZ-icv treated rats are important as 
abnormalities in the central cholinergic system affect learning and memory (Spencer and 
Lal, 1983). A decrease in choline acetyltransferase (ChAT) activity has been consistently 
found in the hippocampus of STZ-icv treated rats as early as 1 week following drug 
treatment and is still present 3 weeks post-injection (Hellweg et al, 1992; Blokland and 
Jolles, 1993; Blokland and Jolles, 1994; Prickaerts et al, 1999; Terwel et al, 1995) (Table 
1). This is followed by a significant increase in acetylcholinesterase (AChE) activity 
(Sokusare et al, 2005; Ishrat et al, 2006). A decrease in hippocampal ChAT activity was 
completely prevented by 2-weeks of orally administered acetyl-L-carnitine, which acts by 
enhancing the utilization of alternative energy sources (Prickaerts et al., 1995; Terwel et 
al., 1995). Chronic administration of cholinesterase inhibitor drugs reduced AChE activity 
in a dose dependent manner, in STZ-icv treated rats regardless of whether treatment began 
1 week prior to, in parallel or 13 days after STZ-icv administration (Sonkusare et al., 2005; 
Shoham et al, 2006). AChE activity was inhibited in the cortex but not in the hippocampus 
(Shoham et al, 2006), and concomitant administration with the calcium channel blocker, 
lercanidipine, potientated a decrease in AChE activity (Sonkusare et al., 2005). Changes in 
both ChAT and ACheE in the hippocampus were prevented by chronic intraperitoneal 
treatment with the antioxidant coenzyme Q10 (Ishrat et al., 2006). Intra-cortical 
administration of STZ to rat pups was followed by reduced expression of ChAT and 
increased expression of the AChE gene, a response which could not be prevented by any of 
the three subtypes of PPAR agonists (Lester-Coll et al., 2006; de la Monte et al., 2006). 
 
Oxidative stress 
 
Evidence of increased oxidative stress has been found in whole brain homogenates in 
particular brain regions of STZ-icv treated rats (Table 1). Estimations of oxidative stress 
induced by STZ-icv treatment commonly ultilise the measurement of malonaldehyde levels 
(MDA), a product of lipid peroxidation used as an indicator of free radical generation, and 
glutathione levels, an endogenous antioxidant that scavenges free radicals and protects 
against oxidative stress, or immunohistochemically for nitrative stress. Significant 
elevations of MDA levels and decreased glutathione levels have been found in the brain of 
STZ-icv treated rats (Sharma and Gupta, 2001a; Sharma and Gupta, 2002; Ishrat et al, 
2006; Pathan et al, 2006). A progressive trend towards oxidative stress has been found 1, 7 
and 21 days following STZ-icv administration (twice 3mg/kg injections) to 4 month old 
rats (Sharma and Gupta, 2001a). Oxidative stress was found also in the brain of 1 year old 
rats, 3 weeks following a lower single STZ-icv dose of 1.5 mg/kg (Ishrat et al., 2006). 
STZ-icv generates NO (Szkudelski, 2001), and oxidative-nitrative stress was found 1 and 8 
weeks following a single 3mg/kg STZ-icv dose (Shoham et al., 2006). Nevertheless it 
appears that generation of NO by NO synthase is not involved since inhibition of this 
enzyme has not prevented STZ-induced responses (Prickaerts et al., 2000). Chronic 
treatment with the antioxidant coenzyme Q10 starting from the day of STZ-icv treatment 
significantly reduced all parameters of oxidative stress (Ishrat et al., 2006). A similar effect 
has been reported for other antioxidants (Sharma and Gupta, 2001a; 2002). 
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Morphology 
 
 STZ-icv administration has been associated with certain brain morphological changes in 
the brain as early as 1 week following a single drug dose (Shoham et al., 2006), and in both 
≥1 year and 4 month old rats (Terwel et al., 1995; Prickaerts et al., 2000; Shoham et al., 
2003; 2006) (Table 1). Glial fibrillary acidic protein (GFAP), a marker of astrogliosis, a 
stereotypic reaction of astrocytes to neuronal damage (Prickaerts et al., 1999), has been 
found to be increased in both brain homogenates and tissue sections (Prickaerts et al., 
1999; 2000). Increased GFAP immunocytochemical staining was mainly located in peri- 
and paraventricular regions including the septum, fornix and fimbria, striatum and 
hippocampus, suggesting that altered hippocampal function could result from an impaired 
innervation and direct damage to this region (Prickaerts et al., 2000; Shoham et al., 2003). 
Inflammatory processes and myelin and axonal neurotoxicity has been reported following 
STZ-icv treatment. Severely affected STZ-icv treated rats had not only astrogliosis, but 
also extensive cell loss, inferred from the increase in the volume of the ventricular system 
(Prickaerts et al., 2000; Shoham et al., 2003). Interestingly, one week after a single STZ-
icv 3mg/kg dose, no change in the number or morphology of cholinergic neurons was 
detected in the basal forebrain nuclei, medial septum, diagonal band or the nucleus basalis 
magnocellularis and there was no change in the density of cholinergic terminals in the 
hippocampus (Shoham et al., 2006). Not withstanding, AChE activity was increased, a 
phenomenon the authors explained as a reduction in synaptic function associated with 
increased GFAP expression in activated astrocytes. Astrogliosis was prevented by a 
chronic treatment with ladostigil, a cholinesterase and monoamine oxidase-B inhibitor with 
neuroprotective effects (Shoham et al., 2006). At the ultrastructural level, 3 weeks 
following STZ-icv administration a significant enlargement of the trans-Golgi segment in 
the rat cerebral cortex was found, which did not resemble the Golgi atrophy found in the 
brain of sAD patients, but the authors suggested that considering the proamyloidogenic 
processing of beta-amyloid precursor protein may occur preferentially in the trans-Golgi 
segment, the observed early response of neuronal ultrastructure to desensitisation of the IR 
may predispose cells to form Aβ-amyloid deposits (Grieb et al., 2004). Differences in 
morphological changes in the brain in human sAD and the  STZ-icv rat model could be 
related to direct STZ actions.  
 
Reduced expression of neuronal- and oligodendroglia-specific genes and increased 
expression of genes encoding GFAP and microglia-specific proteins were also found in rat 
pups administered with STZ intra-cortically (STZ-ic) (Lester-Coll et al., 2006). Some 
authors have suggested the hypoplasia and degeneration of the cerebellum found in STZ-ic 
treated rat pups, unlike findings in AD, are related to the early postnatal development of 
the cerebellum in rodents. PPAR agonists produced receptor subtype- and region-
dependent positive therapeutic effects in STZ-ic treated pups with PPAR-δ agonists being 
the most effective (PPAR δ>α>γ subtype effectiveness) in preservation of hippocampal 
and temporal lobes (de la Monte et al., 2006).  
 
Learning and memory 
 
STZ-icv treated rats consistently demonstrate deficits in learning, memory, and cognitive 
behaviour (Table 1). Cognitive deficits are long-term and progressive, observed as early as 
2 weeks after STZ-icv administration and are maintained up to 12 weeks post treatment 
(Lannert and Hoyer, 1998; Salkovic et al., 2006, Shoham et al., 2006; Grünblatt et al, 
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2006). They are found regardless of age in both 1-2 year and 3-month old rats, and also 
after either a single 1 or 3mg/kg injection or multiple 1mg/kg STZ-icv injections (Mayer et 
al, 1990; Pathan et al, 2006; Lannert and Hoyer, 1998; Weinstock and Shoham, 2004; 
Salkovic-Petrisic et al., 2006, Shoham et al., 2006; Grünblatt et al, 2006), although some 
STZ-icv dose-dependency has been suggested with lower STZ doses inducing less severe 
cognitive deficits (Blokland and Joles, 1994; Prickaerts et al., 2000; Grünblatt et al, 2006). 
The correlation between spatial discrimination performance in the Morris task and the 
decrease in hippocampal ChAT activity which resembles the relationship between 
cognitive and biochemical cholinergic changes observed in AD has been found in STZ-icv 
treated rats (Blokland and Jolles, 1993; Blokland and Jolles, 1994). However, results of the 
effectiveness of chronic acetyl-L-carnitine treatment in the prevention of hippocampal 
ChAT activity and abolishing memory deficits in the Morris water maze swimming 
(MWM) test, are inconsistent (Terwel et al., 1995) (Prickaerts et al., 1995). Interestingly, it 
has also been demonstrated that STZ-icv induced development of reactive gliosis and 
oxidative stress 1 week post-treatment, preceded the induction of memory deficits at 3 
weeks post-treatment (Shoham et al, 2006, Sharma and Gupta, 2001a), where no signs of 
neuronal damage or any reduction in specific cholinergic markers were detected in the 
cortex or hippocampus (Shoham et al., 2006).  
 
Although the exact mechanism by which STZ-icv treatment damages cognitive function 
remains unknown, all changes discussed above; energy deficits, reduced activity of choline 
acetyltransferase (cholinergic deafferentiation), induction of oxidative stress and direct 
neurotoxic damage found in the fornix, anterior hippocampus and periventricular 
structures, may form the biological basis for the marked reduction in learning and memory 
capacities. Concordingly, memory deficits were reported to be prevented by chronic 
treatment with several types of drugs with differing mechanisms of action (as reviewed by 
Weinstock and Shoham, 2004); (I) drugs generating alternative energy sources such as 
acetyl-L-carnitine (Prickaerts et al., 1995); (II) cholinesterase inhibitors such as donepezil 
and ladostigil (possessing also monoamine oxidase B inhibition and neuroprotective 
activity which also prevent gliosis and oxidative stress (Sonkusare et al., 2005; Shoham et 
al., 2006); (III) estradiol which prevents reduction in cerebral ATP (Lannert et al., 1998); 
(IV) antioxidants such as melatonin, resveratrol and coenzyme Q10 which prevent an 
increase in free radical generation (Sharma and Gupta, 2001b; 2002; Ishrat et al., 2006). 
Treatment with the NO synthase inhibitor L-NAME had no protective effect on cognitive 
deficits in STZ-icv treated rats (Prickaerts et al., 2000). 
 
BRAIN INSULIN AND THE IR SIGNALING CASCADE IN STZ-ICV RAT  
 
Although alterations of the brain insulin system are the focus of human sAD research 
(Hoyer and Frölich, 2006), investigations in experimental models of this neurodegenerative 
disorder are rare, particularly those exploiting central STZ administration (Table 2 and 3). 
We have previously reported changes in the brain insulin and tau/Aβ system following the 
bilateral application of a single or multiple 1mg/kg STZ dose into the lateral cerebral 
ventricles of adult ≥3 month old rats (Salkovic-Petrisic et al., 2006; Grünblatt et al., 2004, 
Grünblatt et la., 2006) and the group of de la Monte et al. (Lester-Coll et al., 2006, de la 
Monte et al., 2006) has reported changes in the brain insulin system following bilateral 
intra-cerebral 40μg/kg STZ dose to three-day-old rat pups. Since only the abstract of a 
Chinese paper is available regarding brain immunohistochemical analysis of tau protein 
and Aβ expression, 3 weeks following STZ-icv treatment (Chu and Quian, 1995), there is 
little data for a reliable interpretation of their findings. 
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In STZ-icv treated adult rats region-specific alterations of the brain insulin system 
(including insulin, the IR and downstream IR signaling cascade) were identified, and these 
changes are progressive beyond the STZ-icv treatment period (Table 2) (Salkovic-Petrisic 
et al., 2006; Grünblatt et al., 2006). A decrease in the expression of the insulin gene 1 and 
2, as well as the IR gene, was identified in the hippocampus and frontoparietal cortex 12 
weeks following drug treatment. The IRβ protein was decreased in the frontoparietal cortex 
and hypothalamus, but the levels of phosphorylated IRβ (p-IRβ) were increased and 
tyrosine kinase activity was unchanged in these regions, whereas in the hippocampus IRβ 
protein levels were decreased, but p-IRβ levels, as well as tyrosine kinase activity, were 
increased. Downstream from the PI3-K signaling pathway, hippocampal Akt/PKB 
remained unchanged at 4 weeks and decreased by 12 weeks post-treatment, whereas in the 
frontoparietal cortex Akt/PKB expression was decreased 4 weeks and increased by 12 
weeks post STZ-icv treatment. Total GSK-3 levels were unchanged whereas the p-GSK-
3/GSK-3 ratio in the hippocampus was decreased 12 weeks following STZ-icv treatments, 
suggesting a change in GSK-3 activity. In line with this finding, as a downstream target of 
the IR signaling cascade, increase in the expression of tau protein and the p-tau/tau ratio 
were found in the hippocampus 4 and 12 weeks following STZ-icv treatment, respectively, 
and Aβ-like aggregates were absent 4 weeks following drug treatment, but were found in 
leptomeningeal capillaries 12 weeks post STZ-icv treatment (Table 3).  
 
Although the investigated parameters in the brain and the direction of changes identified 
following the intra-cortical (ic) application of STZ (decreased mRNA expression of 
insulin, the IR and IGF-1R, decreased pGSK-3/GSK-3 ratio) are similar to those induced 
by STZ-icv administration (Table 2 and 3) (Lester-Coll et al., 2006; de la Monte et al., 
2006), the results are not quite comparable for several reasons; (I) Intra-cortical 
administration of STZ in the rat pups could be expected to induce more non-specific 
localized tissue damage than administration of STZ into the cavity of the lateral cerebral 
ventricles of adult rats. (II) Sensitivity of brain neurons to STZ toxic effects could be 
expected to differ in the three-day-old pups and adult or old rats, at least due to differences 
in the DNA excision repair processes known to be important for STZ intracellular toxicity 
(Szkudelski, 2001). (III) Strain differences in the susceptibility to STZ-induced diabetes 
have been reported (Rodrigues et al., 1997), and two different rat strains were used in icv 
treatment of adult/old rats (Wistar strain, most frequently used in other STZ-icv treatment 
experiments) and ic treatment of rat pups (the Long Evans strain is generally used for the 
investigation of retinal complications of diabetes (Puro, 2002). (IV) Brain regions 
investigated were not completely comparable; frontoparietal cortex, hippocampus and 
hypothalamus in STZ-icv, and temporal lobe, cerebellum and hypothalamus in STZ-ic 
treatment. The region-specific STZ-induced changes in the brain, including the difference 
in changes observed in the hippocampus in comparison with the cerebral cortex (Salkovic-
Petrisic et al., 2006), could be masked in STZ-ic treated pups where temporal lobe 
(including hippocampal formation) was biochemically analysed. (V) Time dependency of 
changes could not be concluded from experiments with STZ-ic treated rat pups as these 
were measured at only a single post-treatment period of 4 weeks (de la Monte et al., 2006) 
or three post-treatment periods were investigated (7, 14, and 21 days) but results were 
reported only for the 14-day period (Lester-Coll et al., 2006). Some changes were not 
observed at 4 weeks but appeared 12 weeks following STZ-icv treatment, like those of tau 
protein and Aβ (Salkovic-Petrisic et al., 2006), but were already present two or four weeks 
after STZ-ic treatment (Lester-Coll et al., 2006; de la Monte et al., 2006) (Table 3). Some 
additional parameters of tau protein and the Aβ system (tau and APP mRNA expression) 
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were investigated in STZ-ic treated pups with a discrepancy between significantly 
decreased tau mRNA and unchanged tau protein expression observed in the hypothalamus 
(de la Monte et al., 2006).  
 
Modest data has been reported regarding the therapeutic effects of drugs on brain insulin 
system alterations induced by central STZ application, i.e. only the effects of PPAR 
agonists in STZ-ic treated rat pups were investigated (de la Monte et al., 2006). These 
drugs demonstrated some therapeutic effects with respect to the insulin/IR signaling 
cascade dysfunction, but it is import to note that the effects were region- and PPAR 
subtype-specific. Not all PPAR-subtype agonists showed positive effects on STZ-induced 
damage and some of the alterations (insulin mRNA and p-GSK-3/GSK-3 ratio) did not 
respond to any of the PPAR-subtype agonists used (Tables 2 and 3). Although the PPAR-δ 
subtype agonists were the most effective (this subtype was found to be most abundant both 
in rat and human brain) (de la Monte et al., 2006), they were incapable of normalizing the 
changes to APP mRNA in the temporal lobe in contrast to the PPAR-α and –γ subtype 
agonists. Also, it has to be kept in mind that the positive therapeutic effects of PPAR 
agonists in STZ-ic treated pups on IR dysfunction (as well as on cholinergic transmission 
and neuronal damage), were obtained 4 weeks after a single intraperitoneal injection given 
on the same day as STZ. Evidence for the entry of these PPAR agonist substances through 
the blood brain barrier, which is of vital importance for their effects within the brain after 
only a single intraperitoneal injection, has not been provided by authors. Further 
experimentation is needed to clarify the meaning of these findings in respect to the 
mechanism of PPAR agonists since the positive therapeutic effects of treatment with the 
chronic PPAR-γ agonist rosiglitazone (which probably does not pass the blood brain 
barrier in a significant amount) (Pedersen and Flynn, 2004) on cognitive deficits in both 
humans with sAD and transgenic Tg2576 Alzheimer mice, are suggested to be related to 
an improvement of peripheral insulin resistance which positively affects cognition (Watson 
et al., 2005; Pedersen et al., 2006; Landreth, 2006). Such a mechanism does not seem 
likely in 3 day-old rat pups which do not develop peripheral insulin resistance since 
decreased blood glucose levels were found 14 days following the STZ-ic administration 
(Lester-Coll et al., 2006). 
 
INSULIN RESISTANT BRAIN STATE AS A PROBABLE TRIGGER FOR sAD 
PATHOLOGY 
 
Convincing evidence indicates that central STZ administration induces alterations 
resembling those found in sAD patients (Hoyer and Frölich, 2006; Cole and Frautschy, 
2006; Qiu and Folstein, 2006; Watson and Craft, 2006; Wada et al., 2005). Similarities 
between human sAD and the STZ-icv model have been noted at three different levels; (I) 
biochemically, in the region-specific decrease in glucose utilization, reduction in 
cholinergic transmission and activation of the markers of oxidative stress damage, (II) 
morphologically, in neuronal damage and loss in hippocampal volume and associated 
structures accompanied by astroglyosis and neuronal inflammation, and finally, (III) 
behaviourally, manifested as progressive learning and memory deficits. However, 
regardless of these similarities, none of these biochemical alterations were able to provide 
a missing link that could connect all these changes to give a clue to the primary event 
which could initiate the pathological hallmarks of sAD, hyperphosphorylated tau protein in 
neurofibrillary tangles and aggregated Aβ peptide in amyloid plaques. Region-specific and, 
for some parameters, time-progressive, changes of the rat brain insulin system following 
STZ-icv treatment seem to be the missing link. Disturbances in insulin action, IR function 
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and downstream signaling pathways have been found post mortem in the brain of sAD 
patients (Hoyer and Frölich, 2006; Cole and Frautschy, 2006; Qiu and Folstein, 2006; 
Watson and Craft, 2006; Wada et al., 2005), suggesting a condition of brain insulin 
resistance, very similar to that found in STZ-icv and STZ-ic treated rats (Salkovic-Petrisic 
et al., 2006; Grünblatt et al., 2006, de la Monte et la., 2006).  
 
The STZ-icv treated rat model has provided additional evidence that a progression of the 
brain insulin resistant state over time leads to Alzheimer-like tau protein and Aβ pathology. 
Three major questions arise from this hypothesis; (1) what could trigger the brain insulin 
resistant state in sAD and at which point in the insulin/IR/downstream signaling cascade; 
(2) how is the brain insulin resistant state connected to pathological changes in the brain; 
and (3) what are the implications of this hypothesis in relation to the drug treatment of 
sAD? 
 
One of the main risks for sAD is aging, associated with increased cortisol action due to a 
shift in the hypothalamic pituitary-adrenal (HPA) axis to an increased basal tone (Cizza et 
al., 1994, for review Hoyer, 2004), frequently reported in AD patients (Raber, 1998). 
Cortisol may be a candidate for compromising the function of the neuronal IR via its 
dysregulation of the phosphorylation site of tyrosine residues in the receptor, and 
noradrenaline (found increased in cerebro-spinal liquid in sAD patients) may desensitise 
the neuronal IR by phosphorylation of serine/threonine residues (Fig. 1B) (Häring et al., 
1986; Giorgino et al., 1993, reviewed by Hoyer, 2004). Desensitisation of the IR in sAD is 
suggested by findings of up-regulated IR density associated with reduced activity of IR 
tyrosine kinase (Frölich et al., 1998). This point seems to be the only major difference 
between sAD and the STZ-icv rat model regarding the brain insulin system. Human data 
contradicts the findings of decreased or unchanged expression of the IRβ subunit, and the 
increased or unchanged expression of the tyrosine-phosphorylated IRβ subunit and tyrosine 
kinase activity seen in the STZ-icv model (Grünblatt et al., 2006). However, this 
inconsistency could be related to the possible peripheral (e.g. glucocorticoid-induced) 
origin of the neuronal IR alterations in sAD and its lack in STZ-icv treated rats in which 
direct STZ-induced damage could be involved instead. On the other hand, data from STZ-
icv model studies may point to an imbalance between the IR tyrosine phosphorylation and 
dephosphorylation under pathological conditions. This is in agreement with a generally 
known phenomenon of insulin receptor signaling dysfunction (i.e. an insulin resistant state) 
which may be caused when tyrosine phosphorylation, and/or when tyrosine 
dephosphorylation fails (Goldstein, 1993), and/or when serine/threonine phosphorylation is 
increased and maintained at a high level (Häring, 1991; Avruch, 1998) as induced by the 
cytokine, tumor necrosis factor-α (Hotamisligil et al., 1994). There is some evidence that 
failing receptor dephosphorylation may inhibit autophosphorylation activity (Lai et al., 
1989) and that with time, tyrosine-phosphorylated IRs become inaccessible to 
phosphatases, therefore allowing persistence of tyrosine kinase activity (Paolini et al., 
1996). The activity of the protein tyrosine phosphatase (PTP) subtype 1B known to 
negatively regulate the function of the IR has not been particularly investigated in AD, but 
the likelihood of a decrease in function cannot be ruled out. Namely, IR 
autophosphorylation/dephosphorylation has been reported to be mediated by reactive 
oxygen species; ie. exposure to hydrogen peroxide could lead to oxidative activation of IR 
tyrosine kinase activity and oxidative inactivation of PTP (Droge, 2005). STZ generates 
reactive oxygen species (Szkudelski, 2001), and similarly aging and AD are associated 
with oxidative stress in the brain (Barja, 2004). However, increased IR tyrosine activity 
does not necessarily lead to increased IR signal transduction throughout the cell, if 
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intracellular downstream pathway signaling elements are affected, which is the case both 
in the animal model (Fig. 1B) (Salkovic-Petrisic et al., 2006; Lester-Coll et al., 2006) and 
in humans (Hoyer and Frölich, 2006).  
 
Interestingly, the activity of the PTP enzyme was found to be regulated by insulin (Kenner 
et al. 1993), and the activity of another protein phosphatase subtype, PP2A, has been found 
largely decreased in the mouse brain 3 days following peripheral STZ administration 
(Clodfelder-Miller et al., 2006), but also in the human AD brain (Gong et al., 1995). PP 2A 
and 2B are involved in phoshorylation/dephosphorylation regulation of tau protein (Gong 
et al., 1994a,b). Thus, insulin resistant brain state, via IR signaling pathway dysfunction, 
may with time lead to the tau hyperphosphorylation directly through the PI3-GSK-3β 
pathway, or through the PP 2A pathway. Importantly, the PI3-GSK-3α pathway may also 
lead to Aβ pathology, as demonstrated in STZ-icv adult rats (Salkovic-Petrisic et al., 2006) 
and STZ-ic rat pups (Lester-Coll et al., 2006) (Fig. 1B), due to insulin-dependent 
production of APP derivatives, β-amyloid peptides (Phiel et al., 2003). The time-dependent 
development of Aβ pathology has been clearly shown in the STZ-icv rat model with no 
pathological signs visible 4 weeks following STZ-icv treatment, and Aβ-like intracellular 
aggregates are visible 12 weeks afterwards (Salkovic-Petrisic et al., 2006). This is in 
agreement with what has been recently proposed, namely that intracellular, rather than 
extracellular accumulation of β-amyloid is an initiating factor in the pathogenesis of AD 
(Oddo et al., 2003). Low brain insulin levels reduce the release of Aβ from intracellular 
compartments into extracellular compartments where clearance is believed to occur. On the 
other hand, once generated, both derivatives of APP, ß-amlyoid (1-40) and ß-amlyoid (1-
42) decrease the affinity of insulin for its receptor, resulting in reduced receptor 
autophosphorylation (Xie et al., 2002), closing the circle back to IR signaling dysfunction. 
Although insulin protein concentration in the brain has not been measured directly in STZ-
icv (ic) rats, it could be assumed that brain-derived insulin formation is reduced according 
to the downregulation of insulin mRNA expression both in animals (Grünblatt et al., 2006; 
Lester-Coll et al., 2006) and humans (Steen et al., 2006). However, this may be 
compensated by peripherally formed insulin, due to undisturbed pancreas function after 
central STZ administration (Lester-Coll et al., 2006), as the main source of brain insulin is 
the pancreas, assuming that the pathobiochemistry induced after STZ-icv injection, is 
mainly due to dysfunction of the IR and downstream signalling. Data from sAD post 
mortem studies have demonstrated stronger insulin-immunoreactivity in neocortical 
pyramidal neurons but unchanged insulin and c-peptide biochemical levels compared to 
the age-matched controls (Frölich et al., 1998). 
 
Convincing evidence indicates that central STZ administration induces brain pathology and 
behavioural alterations resembling those found in sAD patients. Additionally, alterations of 
the brain insulin system found in this experimental model support the hypothesis that 
central insulin resistance might be the primary event which precedes Aβ pathology in sAD. 
Further studies are necessary to clarify this issue and its implications in relation to the drug 
treatment of sAD. 
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Table 1. Previous studies using central administration of streptozotocin in rats. 
 

TIME AFTER STZ TREATMENT REFERENCE STZ DOSE AGE at 
STZ dose 

cognitive tests 
(learning & 
memory) 

biochemical/ 
histological  
analyses (brain 
tissue) 

FINDINGS 

Mayer et al, 
1990 

1x1.5 mg/kg 
icv (unilat.) 

1 year 11-13 days  ↓ learning&memory 
 

Lackovic and 
Salkovic, 1990 

1x ≤20 mg/kg 
icv (unilat.) 

2 months  1 week 
DA,NA,5-HT 

↓ monoamine turnover rate  
↑ monoamine content 

Nitsch and 
Hoyer, 1991 

1x1.25 mg/kg 
icv (unilat.) 

1 year  3 weeks 
energy metabolism 

 
↓ (CTX) 

Ding et al, 
1992 

1x1.5 mg/kg 
icv (unilat.) 

1 year  3 weeks 
monoamine 
content & turnover 

↓ content (enthorhinal 
CTX-5HT,NA; frontal CTX, 
S- NA) 
↑ 5HT turnover rate 

Hellweg et al, 
1992 

1x1.5 mg/kg 
icv (unilat.) 

1 year  1, 3 weeks 
NGF, ChAT 

↓ NGF (1 w) – septum 
↑ NGF (3 w) – HPC, CTX 
↓ ChAT activity (HPC) 

Blokland and 
Jolles, 1993 

1x1.5 mg/kg 
icv (bilat.) 

4 months 10-14 days ~20 days 
ChAT 

↓ learning&memory in 
middle-aged 
↓ ChAT activity (HPC) 

Plaschke and 
Hoyer, 1993 

2x1.25 mg/kg 
icv (bilat.) (3w) 
3x1.25 mg/kg 
icv (bilat.) (6w) 

1 year  3 and 6 weeks 
glycolitic enzymes 

↓ glycolytic enzyme activity 
(CTX, HPC) 

Blokland and 
Jolles, 1994 

1x1.5 mg/kg 
icv (bilat.) 

2 years 2 weeks 
 

~20 days 
ChAT 

no decline in learning & 
memory (active avoidance 
& open field test) 
↓ ChAT activity (HPC) 

Duelli et al, 
1994 

3x 1.5 mg/kg 
icv (bilat.) 

1.5 year  6 weeks 
glucose utilization 

↓ glucose utilization (CTX, 
HPC) 

Terwel et al, 
1995 

1x1.5 mg/kg 
icv (unilat.) 

18 months  3 weeks 
peptidases, 
dehydrogenases, 
ChAT 

↓ ChAT activity (HPC) 
↓ peptidase & 
dehydrogenase activity 
(septum) 

Salkovic et al, 
1995 

1x0.5 mg/kg 
icv (unilat.) 

2 months  1 week 
dopaminergic D1, 
D2 receptors,  
G-proteins 

↓ D1 Bmax (striatum) 
~ D2 Bmax, ~ Gs/Gi 
protein 

Müller et al, 
1998 

1x 1.5 mg/kg 
icv (bilat.) 

1 year  3 weeks 
free fatty acids 
phospholipids 

↑ lipolysis (HPC, T-CTX) 
 

Lannert and 
Hoyer, 1998 

3x1 mg/kg 
icv (bilat.) 

1 year 20, 40, 80 days 85 days 
energy metabolism 

↓ learning&memory 
↓ energy metabolism 

Prickaerts et 
al, 1999 

1x1.25 mg/kg 
icv (bilat.) 

20 months 3 weeks 3 weeks 
astrogliosis marker 
ChAT 

↓ learning&memory 
astrogliosis (S, HPC, 
septum) 
↓ ChAT activity (HPC) 

Hoyer et al, 
1999 

3x ~ 1 mg/kg 
icv (bilat.) 

1 year 12 weeks 12 weeks 
energy metabolism 

↓ learning&memory 
↓ energy metabolism 
 

Yun et al, 2000 1x1 mg/kg 
icv (bilat.) 

15 months  1 month 
energy metabolism 

↓ energy metabolism 

Prickaerts et 
al, 2000 

1x1.25 mg/kg 
icv (bilat.) 

20 months 3 weeks 5 weeks 
astrogliosis 
NO/NOS (IHC) 

partly ↓ learning&memory 
↓ energy metabolism 
↑ astrogliosis 
NOS is not involved in STZ 
induced toxicity 

Sharma and 
Gupta, 2001 

2x 3 mg/kg 
icv (bilat.) 

~ 4 months 
(320-350 g) 

17 days 1,7,21 days 
oxidative stress 

↓ learning&memory 
↑ oxidative stress 
(progressive) 

Weinstock et 
al, 2001 

1x1.5 mg/kg 
icv (unilat.) 
3x0.5 mg/kg 
icv (bilat) 

4 months N.D. N.D. 
morphology 

↓ learning&memory 
↑microgliosis, axonal 
degeneration, distorted 
morphology of axonal 
fibres 

Sharma and 
Gupta, 2002 

2x3 mg/kg 
icv (bilat.) 

4 months 2.5 weeks 3 weeks 
oxidative stress 

↓ learning&memory 
↑ oxidative stress  

Salkovic- 1x0.5 mg/kg  ~ 2-3  1, 4 weeks ↓ DAT 4 w (VMB); 
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Petrisic and 
Lackovic, 2003 

icv (bilat.) months 
(150-200 g) 

monoamine 
transporter mRNA 

↓ NAT4 w  (LC) 
↑ NAT 1,4 w (A1) 

Shoham et al, 
2003 

1x ~1.8 mg/kg 
icv (bilat.) 

3.5-4 
months 
(270-290 g) 

40 days 40 days 
morphology  

↓ learning&memory 
neurotoxicity to myelin and 
axons in fornix and HPC 

Veerendra and 
Gupta, 2003 

1x3 mg/kg 
icv (bilat.) 

3 months 2, 3 weeks 3 weeks 
oxidative stress 

↓ learning&memory 
↑ oxidative stress  

Grünblatt et al, 
2004 

3x 1mg/kg 
icv (bilat.) 

1 year  6 weeks 
gene expression 

altered gene expression 
(IGF-1R, GABA-R, 
glutamate transporter, 
potassium channels) 

Grieb et al, 
2004 

2x ? (N.D.) 
icv (bilat.) 

N.D.  3 weeks 
Golgi apparatus 

↑ trans part of Golgi 
complex (F-CTX) 

Sonkusare et 
al, 2005 

2x1.5 mg/kg 
icv (bilat.) 

4 months 2.5 weeks 3 weeks 
AChE 

↓ learning&memory 
↑ AChE activity (whole 
brain) 

Chu and Qian, 
1995 

1x3 mg/kg 
icv (bilat.) 

N.D.  3 weeks 
morphology, 
IHC - tau protein & 
amyloid beta (1-40; 
1-42) 

↑ expression of tau & 
amyloid beta (CTX, HPC) 

Salkovic-
Petrisic et al, 
2006 

1x1 mg/kg 
icv (bilat.) 

3 months 1, 3 months 1, 3 months 
IR signaling 
cascade 

↓ learning&memory 
at 1&3 m 
disturbed IR signaling 
pronounced at 3 m  

Pathan et al, 
2006 

2x 3 mg/kg 
icv (bilat.) 

~ 4 months 
(320-350 g) 

14 days 21-25 days 
oxidative stress 
glucose utilization 

↓ learning&memory 
↑ oxidative stress 
↓ glucose utilization 

Shoham et al, 
2006 

1x 3 mg/kg 
icv (bilat.) 

4 months 
(320-340 g) 

2 , 4 weeks 1 , 8 weeks  
IHC – cholinergic 
markers, oxidative 
– nitrative stress 

↓ learning&memory at 4 w 
gliosis at 1 w (CTX, HPC-
CA1, septum, c. callosum); 
↑ oxidative stress; 
unchanged ACh neurons 
(1, 8 w)   

Ishrat et al, 
2006 

1x1.5 mg/kg 
icv (bilat.) 

1 year 2 weeks 3 weeks 
oxidative stress, 
ATP, ChAT-AChe 

↓ learning&memory 
↑ oxidative stress 
(HPC,CTX) 
↓ ATP (HPC, CTX) 
↓ ChAT-↑AChE activity 
(HPC) 

De la Monte et 
al, 2006 

1x40 μg/kg 
(intracerebral 
–bilat.) 

pups 1 month 1 month 
cholinergic markers 
NOS 
IR signaling 

↓ learning&memory 
↓ChATmRNA (TL,CB); 
AChEmRNA ↓TL; ↑HPT 
↑NOS2,3mRNA (TL) 
altered IR signaling 

Grünblatt et al,  
2006  

1x1 mg/kg 
3x1 mg/kg 
icv (bilat.) 

3-4 months 2 weeks, 2 
months 

3 months 
insulin and IR 

↓ learning&memory at 2w,1 
and 2 m 
altered insulin and IR 

 

STZ - streptozotocin; icv – intracerebroventricular; unilat – unilateral; bilat – bilateral; w – week; m – month; DA – dopamine; 

NA – noradrenaline; 5-HT – serotonin; NGF – nerve growth factor; ChAT – choline acethyltransferase; AChE – acethyl 

cholinesterase; NO – nitric oxide; NOS – nitric oxide synthase; IR – insulin receptor; MAO – monoamine oxidase; IHC – 

immunohistochemistry; IGF-1R – insulin-like growth factor-1 receptor; GABA-R – gamma aminobutiric acid receptor; CTX – 

cerebral cortex; F-CTX – frontoparietal cerebral cortex; T-CTX – temporal cerebral cortex; S – striatum; HPC – 

hippocampus; VMB - ventral medial bundle; LC – locus coeruleous; TL – temporal lobe; CB – cerebellum; HPT – 

hypothalamus; ND – data not available; ↑ - increase; ↓ - decrease. 
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Table 2. Comparison of brain insulin system alterations in sporadic Alzheimer's 
disease and in an experimental model of this disease, streptozotocin-
intracerebroventricularly treated rats. 
 

STZ-icv rat 
time after treatment 

BRAIN 
INSULIN 
SYSTEM 

HUMAN 

≤1 month 3 months 
therapy 

improvement 

INSULIN 
 HPC↓ (Ins1)  (4) 

F-CTX ↓ (Ins2)  (4) 

 mRNA HPC&HPT&F-CTX&CB ↓ 
(1) 

STZic pups: 
TL&HPT&CB ↓ (2,3) 

 STZic pups: 
PPAR agonists: NO 
(3) 

protein CTX↑/~ (5)    

IGF-1 
   mRNA F-CTX&HPT ↓ (1) 

STZic pups: 
TL ↓;HPT&CB ~  (3) 

 STZic pups: 
PPAR agonists:YES 
(3) 

IR 
 HPC↓ (4) 

F-CTX ↓(4) 

 mRNA FHPC&HPT&F-CTX ↓ (1) 

STZic pups: 
TL&CB ↓ ; HPT~(2,3) 

 STZic pups: 
PPAR agonists:YES 
(partly) (3) 

Protein (IRβ) HPC ↓ (1)  F-CTX ↓ (4) 

HPC ↑  (4) 

HPT ↓ (4) 

 

p IRβ HPC ↓ (1)  F-CTX ↑ (4) 

HPT ↑ (4) 

 

TK activity ↓ (5)  HPC ↑ (4)  

density (Bmax) ↑ (5) STZic pups: 
TL&HPT&CB ↓ (2,3) 

 STZic pups: 
PPAR agonists: YES 
(partly) (3) 

IGF-1R 
CTX, S ↓(6)   mRNA HPC&HPT&F-CTX ↓ (1) 

STZicv pups: 
HPT&CB ↓ ;TL~(2,3) 

 STZic pups: 
PPAR agonists: YES 
(partly) (3) 

protein HPC ↓ (1)    

density (Bmax)  STZic pups: 
TL ↑ (3) 

 STZic pups: 
PPAR agonists: NO  
(3) 

IRS 
mRNA  F-CTX&HPC&HPT ↓ 

(IRS1) (1) 
HPC ↓ (IRS2) (1) 

STZic pups: 
↓ (2) 

  

p-IRS HPC&HPT ↓ (IRS1) (1)    

Akt/PKB 
mRNA     
protein HPC&HPT ~ (1) 

CTX ↓ (cytosol) (7) 

F-CTX ↓ (8) HPC ↓ (8) 

F-CTX ↑ (8) 

 

p-protein HPC&HPT ↓ (1) 

F-CTX ↑ (9)  
   

pAkt/Akt ratio     
activity T-CTX ↑ (soluble fraction) 

(10) 

   

GSK-3 
mRNA     
protein  HPC&CTX ~ (8) HPC&F-CTX ~ (8)  
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STZic pups: 
TL&HPT ~ (3) 

  

HPC ↑ (8)   p-protein  

STZic pups: 
TL&HPT ~ (3) 

  

HPC ↑ (8) 

F-CTX ↓ (8) 

HPC ↓ (8) 

F-CTX ↓ (8) 

 pGSK-3/GSK-3 
ratio 

 

STZic pups: 
TL&HPT ↓ (3) 

 STZic pups: 
PPAR agonists: NO 
(3) 

GSK-3α     
pGSK-3α F-CTX ↑ (11)    

GSK-3β HPC&HPT ~ (1) STZic pups: 
↑ (2) 

  

pGSK-3β HPC&HPT ↓ (1)  

F-CTX ↑ (11) 

   

IDE 
mRNA HPC&HPT~ (1)    

protein HPC ↓ (12)    

activity (Aβ 
degrading) 

↓ (13)    

 
STZ – streptozotocin; icv – intracerebroventricular; ic – intracerebral; IGF-1- insulin-like growth factor 1; IR – 
insulin receptor; IGF-1R- insulin-like growth factor 1 receptor; IRS - insulin receptor substrate; Akt/PKB- 
protein kinase B; GSK-3- glycogen synthase kinase 3; IDE- insulin degrading enzyme; p- phospho; Aβ – 
amyloid beta; HPC- hippocampus; HPT- hypothalamus; TL- temporal lobe; CB- cerebellum; F-CTX- 
frontoparietal cerebral cortex; PPAR – peroxisome-proliferator activated receptor; ↓ - decrease; ↑ - increase. 
Number of reference in brackets: 1) Steen et al., 2005; 2) Lester-Coll et al., 2006; 3) de la Monte et al., 2006; 
4) Grünblatt et al., 2006; 5) Frölich et al., 1998; 6) Grünblatt et al., 2004; 7) Griffin et al., 2005; 8) Salkovic-
Petrisic et al., 2006;  9) Pei et al., 2003; 10) Rickle er al., 2004; 11) Pei et al., 1999; 12) Cook et al., 2003; 13) 
Perez et al., 2000. 
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Table 3. Comparison of brain tau protein and amyloid beta alterations in sporadic 
Alzheimer's disease and in an experimental model of this disease, streptozotocin-
intracerebroventricularly treated rats. 
 

STZ-icv rat 
time after treatment 

 HUMAN 

≤1 month 3 months 
therapy 

improvement 

Tau protein 
mRNA HPC&HPT ↓ (1) STZic pups: 

TL&HPT&CB ↓ (2,3) 
 STZic pups: 

PPAR agonists: YES 
(partly) (3) 

HPC ↑ (4,5) 

↑ (7)) 

HPC ↑ 4,5)  protein F-CTX ↑ (6) 

STZic pups: 
TL&HPT ~ (3) 

  

HPC~ (4) HPC ↑ (4)  p-protein  F-CTX ↑ (6) 

STZic pups: 
TL&HPT ↑ (2,3) 

 STZic pups: 
PPAR agonists: YES  
(3) 

p-tau/tau ratio  STZic pups: 
TL&HPT ↑ (3) 

 STZic pups: 
PPAR agonists: YES  
(3) 

APP 
mRNA HPC&HPT ↑ (1) STZic pups: 

TL&HPT ↑ (2,3) 
 STZic pups: 

PPAR agonists: YES 
(partly) (3) 

protein     

Aβ 
Aβ 40  STZic pups: 

(2) 
  

↑ (7) Aβ 42  

STZic pups: 
(2) 

  

aggregates  absent (5) in meningeal 
capillaries (5) 

 

 
STZ – streptozotocin; icv – intracerebroventricular; ic – intracerebral; p- phospho; APP- amyloid precursor 
protein; Aβ- amyloid beta; HPC- hippocampus; HPT- hypothalamus; TL- temporal lobe; CB- cerebellum; F -
CTX- frontoperietal cerebral cortex; PPAR – peroxisome-proliferator activated receptor; ↑ - increase; ↓ - 
decrease. Number of reference in brackets: 1) Steen et al., 2005; 2) Lester-Coll et al., 2006; 3) de la Monte et 
al., 2006; 4) Grünblatt et al., 2006; 5) Salkovic-Petrisic et al., 2006; 6) Pei et al., 1999; 7) Chu and Quian, 
2005. 
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Fig 1. Brain insulin receptor signaling cascade in physiological conditions (A) and in 
the insulin resistant brain state (B) induced by the streptozotocin-
intracerebroventricular treatement. IR – insulin receptor; IGF-1R – insulin-like growth 
factor-1 receptor; TK – tyrosine kinase; IRS – insulin receptor substrate; MAP-K – 
mitogen activated protein kinase; PI3-K - phosphatidylinositol-3 kinase; Akt/PKB – 
protein kinase B; GSK-3 - glycogen synthase kinase-3; GSK-3-P – phosphorylated 
glycogen synthase kinase-3; APP – amyloid precursor protein; Aβ – amyloid beta; tau – 
tau protein; tau-P – phosphorylated tau protein; sAD – human sporadic Alzheimer's 
disease; STZ-icv – streptozotocin-intraverebroventricularly treated rats. Number of 
reference in brackets: (1) Salkovic-Petrisic et al., 2006; (2) Grünblatt et al., 2006; (3) 
Lester-Coll et al., 2006; (4) de la Monte et al., 2006; (5) Plaschke and Hoyer, 1993; (6) 
Duelli et al., 1994; (7) Lannert and Hoyer, 1998; (8) Pathan et al., 2006; (9) Grünblatt et 
al., 2004; (10) Lackovic and Salkovic, 1990; (11) Sharma and Gupta, 2001; (12) Pathan et 
al., 2006; (13) Shoham et al., 2006; (14) Ishrat et al., 2006. 
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