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Running title: Aristolochic acid as a human carcinogen  
 
Abstract 
 
The activation of protooncogenes and inactivation of tumor suppressor genes are considered 

to be the main molecular events in the multistep process of carcinogenesis. Mutations of the 

TP53 tumor suppressor gene have been found in nearly all tumor types and are estimated to 

contribute to more than 50% of all cancers. Most mutations lead to the synthesis of highly 

stable, inactive proteins that accumulate in the nucleus of cancer cells. Among the 393 codons 

of the human p53 gene, 222 are targets of 698 different types of mutations. Alterations of 

codons 175, 248, 273 and 282 correspond to 19 % of all mutations and are considered general 

hot spot mutations. Dietary exposure to aristolochic acid (AA), an established nephrotoxin 

and human carcinogen found in all Aristolochia species was shown to be the causative agent 

of aristolochic acid nephropathy (previously called Chinese herbs nephropathy). This 

syndrome is characterized by proximal tubular damage, renal interstitial fibrosis, slow 

progression to the end stage renal disease and a high prevalence of upper urinary tract 

urothelial carcinoma (otherwise a highly unusual location). AA preferentially binds to purines 

in DNA and is associated with a high frequency of A → T transversions in the p53 gene. Rats 

treated with AA develop A:T → T:A mutations in codon 61. The pathological and clinical 

features of endemic (Balkan) nephropathy closely resemble those associated with aristolochic 

acid nephropathy except for the slower progression to end stage renal disease and 

longer cumulative period before the appearance of urothelial cancer. Recently, we 

reported the presence of AA-DNA adducts in renal cortex and A → T p53 mutations in tumor 

tissue of patients from Croatia and Bosnia with endemic nephropathy. These data support the 

hypothesis that dietary exposure to AA is a major risk factor for endemic (Balkan) 

nephropathy.   
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Introduction 

A principal objective of cancer research is to understand the etiology of 

environmentally induced malignancies, with the long-term objective of goal of 

reducing the incidence of human cancer. The most common cancer-related genetic 

changes in humans are mutations within the p53 gene. TP53 is a tumor suppressor 

gene that governs cellular responses to a broad spectrum of stress (DNA damage, 

hypoxia, oncogenic stress) by inducing transient or permanent cell cycle arrest or 

apoptosis and plays a key role in the prevention of cancer development.  

Both exogenous exposure to carcinogens and endogenous biological processes are 

known to cause mutations in DNA. Chemical carcinogens induce mutations by 

forming covalent adducts with the nucleotides in DNA, increasing the probability of 

enzymatic errors during DNA replication (1). Studies have shown that some 

carcinogenic agents produce a specific mutational pattern, a “DNA fingerprint” (2), 

because specific types and locations of DNA adducts are linked to a specific 

mutational spectrum in a DNA sequence (3). The mutational spectra of cancer-related 

genes differ depending on cancer type, but provide a molecular link between cancer 

and etiological agent, and give clues to the nature of carcinogens responsible for 

genetic alterations (4).  

Specifically, the study of mutational spectra of p53 and other important cancer-related 

genes can give us clues about carcinogen-DNA interactions, functions of gene 

products and mechanisms of carcinogenesis in specific tissues (3). The p53 gene is a 

good choice for mutational spectrum analysis for several reasons. First, p53 mutations 

are the single most frequent in human tumors and are directly involved in cancer 

formation (more than 20, 000 occurrences of human p53 mutations have been 

registered to date in the International Tumor Registry IARC p53 database 



(http://www-p53.iarc.fr) (5). Second, the p53 gene is relatively small (11 exons 

coding for 393 amino acids), permitting the mutational study of the entire coding 

region (6,7). p53 is highly conserved throughout vertebrates, allowing data 

comparison in animals. Third, most mutations fall into the DNA binding domain 

(DBD), responsible for sequence-specific DNA binding and transcriptional activity, 

as well as for a direct mitochondrial pro-apoptotic activity.  

Many studies have demonstrated a significant correlation between p53 mutational 

spectra and exposure to various types of carcinogens. Mutational hotspots at CpG 

dinucleotides in codons 175, 248, 249, 273 and 282 reflect an endogenous mutagenic 

mechanism (8).  On the other hand, G:C → T:A (G → T) transversions, the most 

frequent substitutions in human cancers, are likely to be caused by carcinogen-DNA 

adducts, and are more frequent in lung cancers of smokers compared to lung cancers 

of nonsmokers (8). Cigarette smoking has been established as a major risk factor for 

the incidence of lung cancer, and p53 mutational hotspots are codons 157, 158, 248, 

249 and 273. Codon 157, G → T transversions, one of the hotspots in lung, breast, 

and head and neck cancers, is uncommon in other types of cancer, and is associated 

with smoking in lung cancer patients. Moreover, the proof for causality became solid 

when it was shown that in vitro exposure of bronchoepithelial and HeLa cells to 

tobacco-derived benzo(a)pyrene generates strong and selective adduct formation at 

guanine positions in codons 157, 248, and 273 (9). Similar benzo(a)pyrene data was 

later shown e.g. for hotspots of liver cell carcinoma. 

In liver tumors from populations living in endemic areas where aflatoxin B1 and 

hepatitis B virus are risk factors for hepatocellular carcinoma, most p53 mutations 

occur at the third nucleotide position (AGG to AGT) of codon 249ser (10,11,12). The 

249ser p53 mutant is more effective in inhibiting wild-type (wt) p53 transcriptional 



activity in human liver cells than other p53 mutants (143ala, 175his, 248trp and 282his) 

(13). 

Another association between p53 mutational spectra and carcinogen exposure was 

found in skin carcinoma caused by UV irradiation – p53 mutations are located at 

dipyrimidine sites, generating CC → TT double-base transitions (14). Furthermore, 

the p53 mutational pattern in radon-associated lung cancer from uranium miners 

differs from the one in lung cancer caused by smoking alone (15). Moreover, liver 

angiosarcomas of vinyl chloride-exposed factory workers have higher frequency of 

p53 A:T → T:A transversions comparing to sporadic angiosarcoma (16).  

In summary, these differences in mutational frequency and spectra among human 

cancer types may be traced to exogenous and endogenous factors to human 

carcinogenesis (17).  

 

Aristolochic acid  

Aristolochic acid (AA) is an intrinsic component of Aristolochia sp. (Aristolochia 

clematitis, A. fanghi, etc.). The structurally related aristolochic acid I (AA-I) and 

aristolochic acid II (AA-II) are nitrophenanthrene carboxylic acids. Herbal medicines 

derived from Aristolochia have been used since ancient times to treat disease (18). 

However, in the 1980s AA was shown to be a strong carcinogen in rats and, in short-

term tests, to be a genotoxic mutagen (19,20,21,22). The US Food and Drug 

Administration (FDA) has issued warnings regarding the medicinal use of 

Aristolochia herbals. Nevertheless, Aristolochia is still widely used in traditional 

medicines and so called “natural” remedies.  

AA is metabolized and activated in a living organism through two major metabolic 

pathways: (i) demethylation of AA I by cytochrome P450 generates a non-



nephrotoxic product, that is biotransformed to glucuronide or sulphate conjugates 

(23); (ii) reactions catalyzed by cellular nitroreductases (such as NADP(H), 

quinonoxidoreductase (NQO1), xanthine oxidase (XO), CYP1A1 and CYP1A2) 

generate reactive intermediate cyclic nitrenium ion (24,25). This electrophilic 

intermediate subsequently reacts with proteins and DNA, the latter leading to gene 

mutation and induction of tumors (26,27). The activation of AA takes place mainly in 

the liver and kidneys, targeting the kidney (cytotoxicity) and forestomach (cancer) in 

rodents (28).  

The herbal drugs containing Aristolochia have been associated with development of a 

characteristic chronic interstitial nephropathy associated with proximal tubular 

damage and severe interstitial fibrosis starting from cortex with paucy cellular 

infiltratates sparing glomeruli called aristolochic acid nephropathy (AAN). This 

tubulointerstitial kidney disease is associated with urothelial carcinoma of the renal 

pelvis and upper ureter (29,30). This location is highly unusual as sporadic urothelial 

carcinoma occurs mostly in the lower urinary tract, typically the bladder. Urothelial 

cancers in the Western world at large occur in the bladder, ureter and renal pelvis at a 

ratio of 50:3:1. Thus, upper urinary tract cancers are uncommon and typically 

associated with particular exogenous carcinogens. (31). Atypia of urothelial cells 

throughout the renal tubules, pelvis and ureter are commonly reported in AAN (29). 

About one hundred AAN cases have been identified so far in Belgium among women 

undergoing a slimming treatment involving ingestion of A. fangchi that was 

inadvertently put into the slimming pills for several months (29,32,33). Additional 

AAN cases have been identified in Europe, Asia and the US. Subsequently, 

approximately 40%-46% of AAN patients developed urothelial carcinoma in the renal 

pelvis and ureter within 2-6 years either as non-invasive urothelial cancer (papillary 



carcinoma) or as invasive flat urothelial carcinoma (30,34,35,36). Known risk factors 

for upper urothelial cancer are occupational exposure to aniline dyes, acrylamines and 

chemicals used in the rubber, leather and petrochemical industries, chronic analgesic 

abuse and chronic irritation (kidney stone). Cigarette smoking is a major risk factor 

for urothelial and squamous cell carcinoma at all sites. Patients with upper urothelial 

cancers in general have a 30-50% chance of developing subsequent bladder cancer 

(37). Very recently, occurrence of bladder cancer 15 years after kidney transplantation 

in AAN patients was reported (38). Bilateral nephrectomy was performed several 

years before bladder cancers were diagnosed, preventing the possibility that upper 

urothelial cancers could have been detected (38). 

 

AA as a mutagen 

AA forms covalent DNA adducts in rodents (40,41,42) as well as in AAN patients 

(36,43,44,45). Covalently bound AA-DNA adducts, present for the life time in 

rodents and for many years in humans, now are considered to be a reliable biomarker 

of exposure to this environmental carcinogen (25,27,44,45,46). 

The enzymatic activation of AA leads to formation of the ultimate carcinogen 

aristolactam-nitrium ion (cyclic N-acylnitrenium ion) (Figure 1), which binds to 

DNA, preferentially to exocyclic amino groups of purine nucleotides (deoxyadenosine 

and deoxyguanosine), forming 7-(deoxyadenosin-N(6)-yl)aristolactam I (dA-AAI, 

compound 2, Figure 1) and 7-(deoxyguanosin-N(2)-yl) aristolactam I (dG-AAI, 

compound 3, Figure 1), 7-(deoxyadenosin-N(6)-yl) aristolactam II (dA-AAII) and 7-

(deoxyguanosin-N(2)-yl) aristolactam II (dG-AAII). The activation of AA is an 

unusual case of intramolecular acylation, producing the ultimate carcinogen (27,39).  



The dominant and most persistent DNA adduct, dA-AAI, is a mutagenic lesion 

leading to AT → TA transversions in vitro. DNA binding studies confirmed that AAI 

and AAII bind to the adenines of mouse ras codon 61, forming adducts associated 

with distinct activation of H-ras by a specific A → T transversion at codon 61 (wt 

CAA → CTA). This mutation occurs selectively at the first adenine of codon 61 in all 

AA-induced squamous cell carcinomas of the forestomach and ear duct examined in 

rat (47,48). Similar mutations, but at lower frequency, were demonstrated at c-Ki-ras 

codon 61 in 1 of 7 ear duct tumors (CAA → CAT) and in 1 of 8 tumors of the small 

intestine (CAA → CTA), as well as at c-N-ras codon 61 (CAA → CTA) in a 

pancreatic metastasis (47). Of note, neither have other ras codons nor ras mutations in 

urothelial cancers been studied to date. 

Urothelial carcinoma as well as urothelial atypia have been associated with 

overexpression of p53 protein in urothelial atypia and neoplastic cells from 10/10 and 

4/4 Belgian AAN patients, respectively, suggesting that the p53 gene is mutated in 

AAN-associated urothelial carcinoma (29,34). Hollstein et al. (49) designed a 

powerful and elegant genetic mutagenesis assay that allows proofing the direct 

mutagenic effect of a test substance towards human p53 in primary tissue culture 

cells. Mouse embryo fibroblasts derived from gene-targeted knock-in mice (Hupki), 

that had substituted their endogenous mouse p53 DBD (Ex 4-9) by the human 

counterpart, were exposed to AAI (100 M for 48 h) and then subjected to 9-13 

passages. Five of the 10 established cultures harbored p53 DBD mutations that 

produced aberrant nuclear overexpression of the mutant protein. Of note, all were 

transversions, including 4 A → T transversions on the non-transcribed strand, a rather 

unique hallmark of mutagenesis by AAI (and rare in spontaneous mutations) (47,49). 

Moreover, the characteristic d-adenosine and d-guanosine DNA adducts of AAI were 



detected in the DNA of the outgrowing fibroblast lines (50). Remarkably, urothelial 

carcinoma cells from an AAN-patient in UK also harbored an A → T transversion 

(AAG → TAG) on the non-transcribed strand at codon 139 of exon 5 in the p53 gene, 

leading to a stop (Lys → Stop) (50). Moreover, the mutated base adenine has the 

same neighboring bases in codon 139 of the p53 gene as in codon 61 (CAA) of the H-

ras gene, suggesting a sequence specific mechanism during mutagenesis (50). 

Another mutation (G → A) was found in codon 245 (hotspot for p53 mutations) in the 

p53 gene in DNA from the breast and liver tumors of the same AAN patient (50). 

Since G → A transitions are not typical of AA, it is not likely that the p53 mutation in 

the breast and liver tumors was induced by AA and probably only the urothelial tumor 

was causally related to AA exposure. Importantly, this study provides a direct 

etiologic link between a defined exposure to a chemical carcinogen and human cancer 

and clear additional support for the carcinogenicity of AA.  

Recently, the same Hupki system was used for studies of the AA mutation signature 

in the human p53 gene. Six immortalized cultures from 18 primary cultures exposed 

to AAI (50 M for 48 h) again harbored p53 mutations in the human DNA binding 

domain. The most frequently observed mutation was A → T transversion (51). One of 

the mutations was identical to the A → T transversion in codon 139, originally seen in 

the urothelial cancer of an AAN patient with documented AAI exposure (50). In 

contrast, among the seven p53 mutations identified thus far in >60 Hupki cell lines 

that immortalized spontaneously (i.e. no carcinogen treatment), none were A:T → 

T:A transversions. In addition, no A → T substitutions were identified among the 

previously reported set of 18 mutations in Hupki cell lines derived from 

benzo(a)pyrene treatment, in which transversions at G → C base pairs predominated 

(51). Finally, using AAI and AAII-exposed DNA from the human breast cancer cell 



line, the AA-DNA binding spectrum within the p53 gene was mapped preferentially 

to purines in Exons 5-8 of p53 (52).  

The relationship between AA-induced DNA adducts and mutations in rat liver and 

kidney (the tissues that activate AA) was recently reported by Mei et al. (28). Strong 

linear dose-responses for AA-induced DNA adducts were found in treated rats.. 

Kidneys had at least two-fold higher levels of DNA adducts and mutation frequencies 

than livers, with no significant difference between the mutation spectra in AA-treated 

livers and kidneys (mostly A:T → T:A transversions). However, there was a 

significant difference between the mutation spectra in both kidney and liver of AA-

treated and control rats (mostly G:C → A:T transitions). These results link AA 

exposure that eventually results in kidney tumors in rats, to a significant increase in 

AA-induced DNA adduct formation with a characteristic mutation in kidney tissue. 

Although the same treatment does not produce tumors in rat liver, it does induce DNA 

adducts and mutations in this tissue, albeit at lower levels than in the kidney (28). 

Moreover, the mutation frequency in kidneys of AA-treated rats was shown to 

correlate with tumor incidence in the kidney (53).  

 

Aristolochic acid nephropathy and endemic (Balkan) nephropathy 

Endemic nephropathy (EN) is characterized by chronic tubulointerstitial nephritis 

with slow progression to terminal renal failure. EN is present in several rural areas in 

the valleys of big Danube tributaries in Bosnia and Herzegovina, Bulgaria, Croatia, 

Romania and Serbia affecting approximately 2-7% of exposed rural farming 

population (54,55). EN has several epidemiological characteristics: (i) it is present 

only in certain villages with completely unaffected villages located in close 

proximity; (ii) household (not inherited) pattern of disease was observed; (iii) it 



affects only adult population; (iv) there is strong association (~30-50%) with upper 

urothelial cancers (UUC). The specific mortality associated with UUC in this region 

is 50 times higher than elsewhere in Europe (56). Epidemiologic findings and striking 

geographical correlation of two very rare diseases pointed from the beginning to a 

common environmental etiological agent. EN was first described more than 50 years 

ago and many toxic agents have been investigated (57). In the last two decades 

ochratoxin A (OTA) was a major focus of interest. This hypothesis was supported by 

the detection of so-called “OTA-associated” DNA adducts (deoxyguanosin adducts) 

in urothelial tumors of Bulgarian patients (58). However, presence of OTA in these 

adducts could not be confirmed (59,60). Although there are reports on higher 

concentrations of OTA in food, blood and urine of inhabitants in EN regions 

compared to other regions, there is no evidence that OTA is a risk factor for EN (61, 

62). According to the European branch of the International Life Sciences Institutes, 

there is no convincing evidence from human epidemiology to confirm the association 

between OTA exposure and the prevalence of EN and/or upper urothelial cancers 

(63). The Scientific Panel on Contaminants in the Food Chain of the European Food 

Safety Authority also concluded that epidemiological data are incomplete and do not 

justify the classification of OTA as a human renal carcinogen (64). OTA induces renal 

adenomas in rodents and no urothelial cancers. This is one of the strongest arguments 

against OTA as a major risk factor for EN-associated urothelial malignancy.  

Pathological findings in EN differ also in some very important elements from findings 

in animal models of OTA nephrotoxicity but are almost identical with findings in 

aristolochic acid nephropathy (30).  

Vanherweghem and his group (33) suggested that the hypothesis that AA was an 

etiologic agent in EN should be evaluated. Based on pathological findings, Cosyns et 



al. (30) debate whether AAN could be the clue for EN, caused by the common 

etiologic agent, AA. More than 30 years ago Ivić (65) made remarkable observations 

that implicated AA as a major risk factor for EN. Unfortunately, during the next three 

decades, this hypothesis was put aside, and we confirmed (66) for the first time 

experimentally that seeds of Aristolochia clematitis were commingled with wheat 

seeds and contaminated the flour used by farmers from EN villages (Figure 2). Unlike 

in AAN, where the exogenous carcinogen was present in slimming pills, in EN, 

according to our data, this environmental toxic substance was ingested through bread 

(66,67). Finally, this hypothesis was confirmed by prima facie evidence of the 

presence of AA-DNA adducts in DNA extracted from the renal cortex and from upper 

urinary tract cancer tissue of the patients with EN whom we tested (44). In addition, 

we have reported on the p53 mutations in urothelial tumors of Croatian and Bosnian 

EN patients (44). Using AmpliChip p53 microarray, Exons 2-11 were sequenced and 

19 base substitutions were identified. The mutations at A:T pairs accounted for 89% 

(17/19) of all mutations, with the 78% of these (15/17) being A:T  T:A 

transversions (Figure 3A). Of note, p53 mutations in EN patients with urothelial 

cancers from Croatia and Bosnia are unique and not consistent with IARC p53 

database R12, November 2007 (6). Namely, in other parts of the world (in the general 

population of patients with upper urothelial cancers) the A  T transition account for 

only 4% of all p53 mutations (Figure 3B). In addition, p53 mutations in the patients 

whom we tested appear to cluster between amino acid residues 270 and 290 and at 

four sites mutations occurred twice (179-2, 274-3, 280-3, and 291-1). The 209-1 and 

280-3, both A:T  T:A mutations found in EN patients, were also detected in human 

Hupki cells treated with AAI (49,51).  

 



Conclusion 

Epidemiological, pathological, clinical and biochemical studies confirm that AA is a 

major risk factor for EN. The presence of covalently bound AA-DNA adducts is a 

strong biomarker of prior exposure to this environmental carcinogen. Clinical and 

pathological features of EN and AAN, coupled with characteristic p53 mutational 

spectra in the upper urinary tract malignancies found in this population (the presence 

of AT → TA transversion) are strong supplementary arguments in favor of an 

etiological role of AA in EN-associated urothelial tumors and allow us to suggest that 

EN, CHN and AAN are the same disease and an already acknowledged worldwide 

problem (69) 
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Abbreviations used in this paper: aristolochic acid (AA), endemic nephropathy 

(EN), DNA binding domain (DBD), aristolochic acid - associated nephropathy 

(AAN), transitional cell carcinoma (TCC), ocratoxin A (OTA), International Agency 

for Research on Cancer (IACR). 

 

 

 

 

 



Figure legend: 

 

 

Figure 1. Formation of AA-derived DNA adducts (AAI (R=OCH3) and AAII (R=H). 
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Figure 2. Aristolochia clematitis growing in the middle of wheat field in the Croatian 

endemic village of Kaniža during harvest time 2008.  

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. p53 mutational spectra in upper urinary tract urothelial cancers (UUC). (A) 

UUC of EN patients in Croatia (19 mutations). (B) Urothelial cancers of kidney, renal 

pelvis, ureter and urethra, excluding bladder (230 mutations). Data from IARC p53 

database, R12 released in November 2007 (6); adapted from ref. 44. 
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