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1. INTRODUCTION 

 

1.1. Genomic instability  

The maintenance of genomic stability is essential for cellular integrity (1). 

Genomic instability includes small structure variations such as increased frequencies of base pair 

mutation, microsatellite instability (MSI), as well as significant structure variation such as 

chromosome number or structure changes, which is also called chromosome instability (2,3). 

Double-strand breaks (DSBs) are one of the most dangerous types of DNA damage because they 

disrupt the continuity of chromosomes (4,5). Failure to eliminate DSBs leads to genome 

instability and tumorigenesis (4,6). DSBs are predominantly repaired by either the non-

homologous end-joining (NHEJ) pathway or the homologous recombination (HR) pathway (7,8). 

NHEJ directly ligates the broken DNA ends, whereas HR uses a homologous sequence from 

sister chromatid as a repair template (7,9). 

Correct repair of DSBs is critical for the maintenance of genome stability. HR and NHEJ are the 

two dominant repair pathways involved in DSB repair (7,9). 

 

 

1.1.1. Genome instability and cancer 

 

A high rate of changes to a cell's genome enables the acquisition and evolution of the well-

known hallmarks of cancer. As such, virtually all cancer cells exhibit genomic instability in one 

form or another. For example, at least two thirds of human cancers are mosaic aneuploid as a 

result of frequent gains and losses of whole chromosomes during cell divisions. Such whole-

chromosomal instability (wCIN) can promote gains of extra copies of oncogenes or losses of 

tumour-suppressor genes, and it allows the selection of karyotypes that thrive in certain 

environments. Tumor relapse following the initial success of anticancer therapies, as well as 

anticancer drug resistance, has therefore been attributed to wCIN (10) . 
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Another form of genomic instability frequently observed in cancer cells is instability at the level 

of chromosome structure. Structural CIN (sCIN) encompasses a variety of changes to the 

genome, including translocations, deletions, inversions, and fragmentations. sCIN is caused by a 

poor repair of damaged DNA, due to, for example, mutations in DNA repair pathway 

components or inefficient cellular responses to DNA damage (11). 

 

 

1.1.2. Genome instability, cancer and micronucleus 

 

Almost 100 years ago, Theodor Boveri introduced a hypothesis mechanistically linking 

chromosomal abnormalities to carcinogenesis (12). As a result of his observations, a causal role 

of these events in anetiology of cancers has been postulated. 

Cancer is a genomic disease associated with accumulation of genetic damage. The majority of 

solid tumours show a large number of complex chromosomal aberrations (CAs) that are not 

always shared by cells of the same tumour and may be not necessarily linked to a particular 

tumour type (13). These chromosomal alterations occur in benign and malignant lesions, as well 

as in pre-neoplastic stages, and include structural and numerical aberrations. The acquisition of 

genomic instability, a condition that predisposes a cell to accumulate stable genome mutations, 

represents an early step in the process of carcinogenesis (14). 

Cellular genomes are continuously exposed to endogenous and exogenous insults causing 

structural alterations to chromosomes leading to altered gene dosage and expression. Mutations 

in oncogenes, tumour suppressor genes and other genes involved in genome maintenance could 

therefore lead to a mutator phenotype that increases the risk of acquiring new mutations 

including those associated with cancer (15). 

The most frequently observed errors in cancer cell lines are chromosomes that lag behind the 

separating packs of chromosomes at anaphase (16). These laggards can acquire damage during 

cytokinesis, resulting in deletions and chromosomal translocations in daughter cells (17). These 

and other types of missegregated chromosomes also form micronuclei, structures often used as a 

marker in cancer diagnosis. Micronuclei suffer from replication stress and damage (18). 
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Several human syndromes, including Fanconi anaemia, Bloom’s syndrome, Werner’s syndrome, 

ataxia, telangiectasia and others, characterised by heritable mutations in a variety of tumour 

suppressor genes have been associated with a chromosomal instability and cancer predisposition  

(19). Epidemiological studies of cancer risk in first-degree relatives of cases have consistently 

shown a 2- to 3-fold increased risk over the general population, and selection for early-onset 

cases generally produces a higher relative risk (20,21). Over 100 Mendelian cancer syndromes, 

including hereditary breast/ovarian cancer, familial adenomatous polyposis, hereditary non-

polyposis colon cancer and von Hippel–Lindau syndrome are all known to involve deficiencies 

in DNA repair systems, but they only account for 5% of cancer cases (19). The cancer risk 

modulation in the general population principally involves genes of low or moderate penetrance 

that, in combination, are responsible for the observed interindividual cancer susceptibility (19). 

Micronucleus (MN) and other nuclear anomalies such as nucleoplasmic bridges (NPBs) and 

nuclear buds (NBUDs) are biomarkers of genotoxic events and manifestations of chromosomal 

instability that are often seen in cancer (22).  

 

 

1.1.3. The origin of micronucleus  

It is now well-established that MN mainly originate from acentric chromosome fragments, 

acentric chromatid fragments or whole chromosomes (Figure 1) that fail to be included in the 

daughter nuclei at the completion of telophase during mitosis, because they did not attach 

properly with the spindle during the segregation process in anaphase (23-26). 
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Figure 1. Micronucleus formation adopted from Luzhna L et al. (27). 

 

Micronucleus from acentric chromosome or chromatid fragments 

Acentric chromosome fragments originate via multiple mechanisms. Radiation biology studies 

over several decades have shown that misrepair of DNA double-strand breaks can lead to 

symmetrical and asymmetrical chromatid and chromosome exchanges as well as chromatid and 

chromosome fragments (23-26). A small proportion of acentric chromosome fragments may 

simply arise from unrepaired double-stranded DNA breaks, but this is only likely when DNA 

damage load exceeds the repair capacity of the cell within a specified time frame. The propensity 

for misrepair of DNA breaks is enhanced if the error-free homologous recombinational DNA 

repair pathway is dysfunctional due to defects in relevant genes such as BRCA1 and BRCA2; 
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furthermore, DNA breaks, which lead to MN formation, may be left unrepaired if repair enzymes 

in the non-homologous end joining pathway are defective (28,29). 

Other mechanisms that could lead to MN formation from acentric fragments include 

simultaneous excision repair of damaged (e.g. 8-oxo-deoxyguanosine) or inappropriate bases 

incorporated in DNA (e.g. uracil) that are in proximity and on opposite complementary DNA 

strands. Such simultaneous excision repair events, particularly if the gap-filling step is not 

completed, leads to DNA double-strand breaks and MN formation (30,32). In fact, this process 

can be exploited to greatly enhance the lymphocyte MN assay response to genotoxic agents that 

mainly induce DNA adducts. This enhanced sensitivity is achieved by converting excision-

repairable DNA lesions into DNA strand breaks, and therefore, MN by treatment with cytosine 

arabinoside (during G1 phase of the cell cycle), which inhibits the gap-filling step of excision 

repair (33). More recently, it has been shown that MN can also originate from fragmented 

chromosome material when NPB are formed, stretched and broken during telophase (34). 

Micronucleus from malsegregated whole chromosomes 

Lymphocyte MN in healthy people, not abnormally exposed to genotoxins, usually originate 

from either acentric chromosome fragments or whole chromosome loss events at a ratio ranging 

between ∼30:70% at one extreme to 70:30% at the other extreme depending on age and gender. 

In lymphocytes, MN increase with age and are generally higher in females relative to males (25). 

Sex chromosomes contribute the majority of chromosome loss events with increasing age (35).  

There are a range of possible molecular mechanisms that could cause chromosome 

malsegregation at anaphase resulting in MN formation. One of the mechanisms that may lead to 

MN from chromosome loss events is hypomethylation of cytosine in centromeric and 

pericentromeric repeat sequences such as classical satellite repeats at pericentromeric regions 

and higher-order repeats of satellite DNA in centromeric DNA (36,37). Other variables that are 

likely to increase MN from chromosome loss are defects in mitotic spindle assembly, mitosis 

check point defects and abnormal centrosome amplification (38,39). A recent study suggests that 

dicentric chromosomes resulting from telomere end fusions may often be involved in mis-

segregation events; this may occur when the centromeres of the dicentric chromosome are pulled 
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towards opposite poles of the cell during anaphase with forces that are sufficient to detach the 

chromosome from the spindle (40). 

 

1.1.3.1. Micronuclei formation: from genetics to epigenetics 

Epigenetics has become a very promising target for manipulation in molecular biology because 

of the growing evidence of its involvement in chromatin status regulation, gene expression; and 

both epigenetics and genetics have an equal influence on the development of genomic instability 

and cancer (41). The greatest potential of epigenetic alterations is their reversible nature in 

contrast to mutations. 

Epigenetics is rather defined as a memory of stable changes in gene expression without changes 

in gene sequence, and such memory can be passed on to progeny (42). The ability of cells to 

change gene expression without altering gene sequence not only allows for maintaining tissue 

identity but also gives a possibility for the adaptation to a changing environment, should such 

changes occur (43). Because transcription requires the cooperative effort of chromatin, the 

protein complexes that modify chromatin structure and transcription factors, the objective of 

epigenetics is to find out how both the genetic code in the DNA sequence and the way that the 

DNA is packaged control gene expression (44).  

The presence of micronuclei is a hallmark of chromosome instability. Micronuclei are formed 

when one or a few chromosomes fail to join a daughter nucleus and form their own nuclear 

envelope (18).  Micronuclei appear to be structurally comparable to primary nuclei, but display 

reduced functioning in transcription, replication and DNA damage repair (45). These defects are 

likely a consequence of reduced nuclear pore protein levels in micronuclei leading to impaired 

micro-nuclear trafficking (18,34,46). 

Epigenetic regulation includes at least four outlined mechanisms: DNA methylation, histone 

modifications, chromatin remodelling, and non-coding RNA expression (47,48). 

DNA methylation is studied more than others. A methyl group replaces a hydrogen atom in the 

cytosine base of DNA, thus creating a new covalent bond. Such modification happens 

predominantly in cytosine-phosphate-guanine (CpG)-dinucleotides (49). The addition of a 
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methyl group does not affect the transcription of cytosine, but it alters chromatin in a way such 

that to interfere with and reduce DNA-binding capacities of transcription factors (50). Methyl-

CpG-binding proteins (MBPs) recruit transcriptional suppressors to modify chromatin (51,52). 

Enzymes that methylate DNA are DNA methyltransferases: DNMT1, DNMT2, DNMT3a, and 

DNMT3b. DNMT1 can maintain a DNA methylation pattern by reading and faithfully copying it 

from an old DNA strand to a newly synthesized strand during replication. DNMT3a and b target 

unmethylatedCpG sites for de novo methylation in embryonic stem cells and cancer cells (53). 

Such methylation activity is important for the establishment of parental imprints (54). DNMT2 

has been shown to methylate tRNA(55), in addition to a weak methyltransferase activity in 

vitro (56). 

During the past years, it has become clear that DNA damage accumulates in micronuclei (46,57). 

This damage has been suggested to be a starting point for chromothripsis (57), where one or 

multiple chromosomes acquire dozens to hundreds of clustered rearrangements in a single 

catastrophic event (58). Chromothripsis is common in cancer and is associated with poor 

prognosis (58,59). One of the current models for chromothripsis involves DNA shattering in 

micronuclei followed by reincorporation into a daughter nucleus, where random religation can 

take place (60). 

The role of DNA methylation should be emphasized as crucial for normal development and 

genome stability. The distribution of CpG-dinucleotides is not random in the genome. Most of 

CpG sites are clustered in promoter areas of genes creating so-called CpG islands (49). Usually, 

promoters of tumour suppressor genes are hypomethylated to allow their expression for normal 

functioning of cells (61), whereas oncogenes and some repeat elements are silenced through 

hypermethylation, thus maintaining genome integrity (62). Reanimated transposons can lead to 

translocations, gene disruption, and chromosomal instability (63). X chromosome inactivation is 

also a result of hypermethylation (64). Centromeric regions of chromosomes are heterochromatic 

and lay within tandemly repeated DNA. Constitutive heterochromatin of centromeres is 

epigenetically silenced by histone methylation and DNA hypermethylation, thus enabling a low 

frequency of recombination and the repression of transcription (65,66). However, 

undermethylation of repeated DNA sequences and satellite DNA in the centromeric and 
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pericentromeric regions of chromosomes is highly linked to karyotypic instability found in a 

variety of cancers (67). 

The association between folate levels and MN are shown in many papers. Folate is an important 

B group vitamin that partakes in a complex homocysteine cycle which yields SAM – a key 

methyl donor for DNA methyltransferases (68). Some studies have shown that folate deficiency 

is associated with genomic damage and formation of MN and other nuclear abnormalities in 

human lymphocytes (69,70). Furthermore, folate supplementation led to a pronounced reduction 

in DNA damage and MN formation (71). 

Moreover, folate and vitamin B12 perform an important function supplying methyl groups 

essential for DNA metabolism and maintenance (72,73). Folate is required for the synthesis of 

deoxythymidine monophosphate (dTMP) from deoxyuridine monophosphate (dUMP) and plays 

a very important role as a methyl donor within the folate–methionine and DNA methylation 

maintenance pathways (74). It has been shown that both micronutrient deficiency and/or excess 

can have detrimental effects in terms of genome damage (75). In folate deficiency condition, 

dUMP accumulates resulting in uracil being incorporated into DNA instead of thymine (76). 

Excessive incorporation of uracil not only leads to point mutations but also results in single- and 

double-strand DNA breaks, chromosome breakage and MN formation (77,78). 

Vitamin B12 deficiency also causes high uracil incorporation by restricting synthesis of the form 

of folate required for dTMP synthesis (i.e. 5,10 methylenetetrahydrofolate), resulting in 

increased chromosome breakage (72,79). Folate and vitamin B12 are required for the synthesis 

of methionine through the remethylation of homocysteine (HCy) and the synthesis of S-

adenosylmethionine (SAM), the common methyl donor required for the maintenance of 

methylation patterns involving cytosine that determinesgene expression and DNA conformation 

(79,80). 

These data provide additional support to the epigenetic mechanisms of formation of micronuclei. 

Some studies have shown the crucial role of altered histone acetylation in MN formation (81,82). 

Only a few studies indicate that microRNAs (miRNAs) are involved in the induction of MN. 

miRNAs are known to regulate gene silencing in mammals, fish, frogs, insects, worms, flowers, 

and viruses. Approximately 2–3% of the human genome encode for miRNAs are important for 

cellular proliferation, apoptosis, differentiation, tissue and organ developing (83). 
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A study of Aypar et al. showed an immediate induction of MN following radiation exposure 

which was paralleled with alterations in DNA methylation and miRNA expression (41). 

 

 

1.1.3.2. Micronuclei and genotoxic agents 

 

Different cytogeneticists have been studying and describing the genotoxic effect of multiple 

exposures on cells and organisms, relating such exposures to chromosomal aberrations, genomic 

instability, and cancer development (84). The micronucleus formed as a result of clastogenic or 

aneugenic treatment will differ in their content. Thus, clastogens and aneugens will form 

micronucleus with acentric fragments and whole chromosomes, respectively (85). 

Micronuclei testing is widely used for the evaluation of genotoxicity of different anti-cancer 

drugs. Adriamycin is an anthracycline drug with strong mutagenic properties that increases 

micronucleus incidence up to 10- to 15-fold and significantly declines cell survival (86, 87). 

Curcumin alone induces MN in PC12 cells but reduces the total frequency of micronucleus 

induced by cisplatin, thus showing both genotoxic and antigenotoxic properties, depending on 

prescription protocols (88). Similarly, anti-cancer drugs, gemcitabine and topotecan, increase 

abnormal metaphases and the number of micronuclei in mouse bone marrow (89). 

Genome damage including DNA strand breakage, chromosome rearrangement, aneuploidy or 

alterations in methylation patterns and subsequent alterations in gene dosage and gene expression 

have been identified as being fundamental to the development of human diseases, such as cancer 

(72,90). In this context biomarkers of chromosome damage need to be sensitive enough to reflect 

changes within the genome as a result of exposure to exogenous and endogenous agents.  

Except to the drugs mentioned above, MN test has been also used in other drugs: vindesine, an 

anti-mitotic vinca alkaloid, if combined with gamma-radiation, reduces survival of V79 cells by 

increasing the frequency of MN (91). Teniposide, an anti-tumor drug used for treatment of 

childhood acute lymphocytic leukemia, induced MN with a peak frequency at 16 h after 

treatment, which was correlated with cell survival decline (91). An interesting genotoxic 
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mechanism of action of natural alkaloids of pyrido-thiazolo-acridine series was observed; 

acridines acted through the DNA-intercalating mechanism in the dark, but DNA-adducts were 

formed after photo-activation (92). Last but not least, some methylating agents, generated a 

linear dose response in MN formation (93). 

As shown in the paragraphs above, MN frequency has been extensively used as a biomarker to 

measure rates of chromosomal damage within human populations investigating exposure to 

genotoxic agents (94), micronutrient deficiency or excess (73,95), or differences in genotypic 

profiles (96). Micronutrient status plays an important role in the protection against genome 

damage by providing co-factors required for the efficient function of enzymes involved in DNA 

repair, detoxification or maintenance of methylation of the genome (97,98). Micronutrient 

deficiency or excess can have modifying effects on genomic integrity that may involve nutrient–

nutrient or nutrient–gene interactions and may depend on an individual’s genetic constitution 

(99). 

Genotoxicity of the environment and manufactory pollution has always been an important issue 

(100,101). In their study, Neri et al. described the effect of various environmental mutagens on 

the frequency of MN in children (0–18 years). Namely, common genotoxic agents, such as 

ionizing radiation, air pollution, and chemical drugs, cause an increase in MN frequency in 

children (102). 

Hornhardt et al. showed that the combination of arsenic trioxide in the concentration close to that 

occurring in nature induces MN in human lymphoblastoid cells if combined with gamma-

radiation. Similar observations were made for genotoxicity of chelate complexes of mercury (II) 

employed in the detoxification of some polluted areas (103). 

In a series of studies, Dorn et al. evaluated clastogenic and aneugenic effects of various anabolic 

steroids misused by athletes in sports (104). Most of these steroids induced micronucleus in V79 

cells up to 2-fold compared with controls, thus, presenting a potential genotoxic hazard (104). 

The potential hazards of dental adhesives interacting with pulp tissues can also be expected. 

Dental adhesives cause the generation of ROS contributing to MN formation up to 6-fold in V79 

cells (105). 
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Micronucleus  test confirm a slight genotoxic potential of the common ingredient of oxidative 

hair dyes, p-phenylenediamine (PPD), in vitro, but not in vivo (106). 

Because genotoxicity is linked to chromosome aberrations, it is expected that cigarette smoking 

would cause MN. Surprisingly, most studies deny the ability of smoking compounds to induce 

MN. In the Human MicroNucleus project, 1409 current smokers and 800 former smokers were 

tested for MN in lymphocytes. Both groups showed a decrease in MN frequency compared to 

non-smokers (107). Although, when tobacco-specific nitrosamine (NNK) was added to the 

culture of the repair-deficient fibroblasts, the frequency of MN was doubled (108), suggesting 

that smoking could induce MN in repair-deficient cells. 

Multiple studies describe kinetics of MN induction by different genotoxic agents (109). For 

instance, some vinca alkaloids block cell division immediately, while vinblastine and vincristine 

cause a delay after exposure, although producing a higher maximal velocity (110). Continuing to 

discuss genotoxicity, it should be mentioned that the induction of MN by colchicine also occurs 

rapidly; MN-PCE (micronucleated polychromatic erythrocyte) appeared in blood stream almost 

at the same time as after exposure to gamma-rays (111). A long latency period in MN formation 

was observed after methylnitrosourea, thus proving that the agent causes DNA breaks through 

the repair of mismatches induced during a previous division. Therefore, a relationship exists 

between the kinetics of MN and chromosomal break formation (112). 

 Micronuclei formation: lifestyle factors, dietary intervention and genetic polymorphisms 

Different variants may have an impact in the effect of some agents on MN frequency. They are 

host factors, lifestyle (smoking, alcohol, occupation, folate, and vitamins intake), and disease 

susceptibility, cancer, etc. (113). Moreover, multiple studies on MN formation and impact of 

many factors on its formation are done: A vitamin antioxidant combination containing the 

vitamins A, C, E as well as beta-carotene, folic acid and rutin, when taken daily for 4 months, 

reduced gammaradiation- induced MN frequency significantly in both younger and older 

subjects. This is suggestive that antioxidant micronutrient combinations may be effective in 

reducing DNA damage, resulting from both exogenous andendogenous insults (114). 

Epidemiological evidence suggests that a diet-containing phenolic compounds may decrease 

genomic instability by protecting DNA from oxidative damage (115,116). In a study, where 
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individuals were placed on a low polyphenol diet for 48 h prior to the consumption of 300 ml of 

red or white wine, it was shown that plasma collected at time points up to 3 h following wine 

consumption produced a significant 70% reduction in hydrogen peroxide-induced 

MN frequency (117). This suggests that consumption of wine may have a protective effect on 

DNA damage levels. 

Gender factors have been studied related to the MN formation. Mainly, a higher micronucleus 

frequency has been reported for women (118). Similarly, the effect of gender was described for 

MN associated with aneuploidy (centromere-positive MN), which was higher in females (119). 

The frequency of X chromosome loss was also shown to be higher in females, especially in older 

women with X chromosome loss of approximately 22% (120). The impact of alcohol 

consumption on MN formation was also observed(119). The effect of smoking correlated 

linearly with chromosomal aberrations such as sister chromatid exchanges (118), and it 

surprisingly had no influence on MN formation (120). 

Bolognesi et al. described an age-related increase in chromosome damages and MN formation in 

lymphocytes (121). Also,  analysis of population data from 12 Italian laboratories in the mid-

1980s–1990s showed the most dramatic increase in MN in the age group of 50–59 that remained 

unchanged thereafter (121). The age-associated incline in CA and MN may be caused by a 

decline in DNA repair (122) and the aneuploidy phenomenon (123). Genomic instability and 

oncogenicity cause the accumulation of DNA damage with age. Oxidative damage can also 

contribute to MN frequency during ageing (124). The baseline MN frequency in new-borns and 

children is relatively low, but higher susceptibility to DNA damages in children may rapidly 

increase the MN formation due to environmental exposure to genotoxic agents (125).  

Single antioxidant supplements 

Vitamin C acts as both an antioxidant and a pro-oxidant, which in this latter role may involve the 

reduction of DNA-bound anions, such as copper and iron that have the capacity to reduce 

hydrogen peroxide to form the highly reactive hydroxyl radical. Interaction of these hydroxyl 

radicals with the DNA backbone can lead to single- or double-strand breaks leading to MN 

formation (126). Vitamin C in vitro has been shown to increase DNA damage in a dose-

dependent manner and at higher doses to enhance the cytotoxicity of hydrogen peroxide to 

human lymphocytes (127). The anti-oxidant capacity of vitamin C stems from the poor reactivity 
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of the semi-hydroascorbate radical produced upon reaction with reactive oxygen metabolites 

(128). Epidemiological evidence shows that a high intake of vitamin C-rich foods reduces the 

risk of certain cancers by up to 50% (129). 

 

Dual antioxidants 

An intervention study involving cohorts of smokers and non-smokers were supplemented with 

vitamin C and E to investigate the impact on Micronucleus frequency. Baseline concentrations of 

both vitamins were lower in the smokers, who also had higher MN frequency compared to the 

non-smoker cohort. Both cohorts were supplemented with 1000 mg vitamin C daily for 7 days 

and then for a further 7 days with both 1000 mg vitamin C and 335 mg vitamin E. The MN 

frequency was significantly reduced in both cohorts, but was more pronounced in the smoker 

cohort (130). 

A crossover intervention study investigated both the alcoholic and non-alcoholic fraction of wine 

in relation to the potential protective effects against DNA damage induced by oxidative stress 

(131). Similarly, individuals were placed on a low-polyphenol diet for 48 h prior to the 

consumption of 300 ml of complete red wine, de-alcoholised red wine or ethanol on three 

separate occasions 1 week apart. The de-alcoholised wine significantly reduced radiation-

induced MN frequency at 1 and 2 h post-consumption by 20%. Interestingly, the ethanol fraction 

increased radiation-induced DNA damage, whereas the complete wine was more effective in 

reducing MN frequency relative to the ethanol fraction, but was not as effective as the de-

alcoholised wine (131). 

Genetic polymorphisms have the major influence on interindividual susceptibility to MN 

formation (132). Single nucleotide polymorphisms in DNA repair genes XRCC1, XRCC3, and 

XPD (xerodermapigmentosum group D) increased micronucleus frequencies in radiological 

workers exposed to low levels of ionizing radiation compared to control individuals of the same 

genotype (133). Also, glutathione S-transferase M1 polymorphisms influenced MN induction in 

coke oven workers, smokers, and subjects living in polluted areas (134). ALDH2 (aldehyde 

dehydrogenase 2) polymorphism is also associated with micronucleus formation induced by 

alcohol (135). 
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The predisposition for diseases, such as cancer, is correlated with micronucleus frequency. 

MTHFR (methylenetetrahydrofolate reductase) variants involved in folate metabolism may 

develop into coronary artery disease (136). Carriers of BRCA1 and BRCA2 mutations are 

predisposed to enhanced sensitivity to DNA damage, micronucleus formation, and cancer 

development (137). 

Van Leeuwen et al. developed a transcriptomic network analysis of MN-related genes based on 

the knowledge from literature and a case study on children and adults who were differentially 

exposed to air pollution. Using a pathway tool MetaCore, the authors retrieved 27 genes and 

gene complexes involved in MN formation. Such genes were mainly associated with cell cycle 

checkpoints, spindle assembly, and aneuploidy. The network was tested against a gene 

expression case study of individuals living in highly polluted mining area of Teplice in Czech 

Republic and less polluted area of Prachatice in the same country. Six genes from the network 

were combined with p53 and IL-6 to create a micronucleus network (138). 

 

1.1.4. The origin of nucleoplasmic bridge  

NPB originate during anaphase when the centromeres of dicentric chromosomes are pulled to 

opposite poles of the cell during mitosis (Figure 2). In the absence of breakage of the anaphase 

bridge, the nuclear membrane eventually surrounds the daughter nuclei and the anaphase bridge 

and in this manner, an NPB is formed. NPB are usually broken during cytokinesis but they can 

be accumulated in cytokinesis-blocked cells using the cytokinesis inhibitor cytochalasin-B (25). 
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Figure 2. Micronucleus originates from either lagging whole chromosomes or acentric 

chromosome fragments. Nucleoplasmic bridge originates from dicentric chromosomes that 

may be caused by misrepair of double strand DNA breaks or telomere end fusions. These 

events can only be observed in cells completing nuclear division, which are recognized by 

their binuclear cell appearance after cytokinesis blocking with Cyt-B. Adopted from Fenech 

M (25). 

 

 

Dicentric chromosomes originate either from misrepair of chromosome breaks or telomere to 

telomere end fusions (23-26). The two mechanisms of nucleoplasmic bridge formation can be 

distinguished in binucleated cytokinesis-blocked cells using telomere probes. NPB arising from 

telomere end fusions are expected to be telomere positive if they retain telomere sequences 

and/or if the fusions are caused by telomere dysfunction due to loss of telomere-binding proteins 

without telomere attrition; however, if the fusion was caused due to complete erosion of telomere 
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sequence, the NPB originating from such a mechanism can only be recognised with a specific 

probe that hybridises in the subtelomeric region adjacent to the telomeric repetitive sequence 

track (25, 139, 140, 141). In contrast, an NPB caused by misrepair of DNA breaks has a low 

probability of occurring within the telomeric sequences and is therefore likely to be telomere 

negative (25, 26). Furthermore, NPB arising from misrepair of DNA breaks are also likely to be 

associated with an MN originating from the acentric fragment generated during misrepair (26, 

142). 

 

1.1.5. The origin of nuclear bud  

Over the past decades, another unique nuclear anomaly known as nuclear budding has been 

associated with chromosomal instability events. Nuclear buds (NBUDs) have been observed in 

cultures grown under strong selective conditions, which induce gene amplification as well as 

under moderate folic acid deficiency (143,146). Shimizu et al. used in vitro experiments with 

mammalian cells to show that amplified DNA is selectively localised to specific sites at the 

periphery of the nucleus and is eliminated via nuclear budding during S phase of the cell cycle 

(147,148). Amplified DNA may be eliminated from chromosomes through recombination 

between homologous regions within amplified sequences forming mini-circles of acentric and 

atelomeric DNA (double minutes). The NBUDs are characterised by having the same 

morphology as an MN with the exception that they are connected to the nucleus by a narrow or 

wide stalk of nucleoplasmic material depending on the stage of the budding process. The 

duration of the nuclear budding process and the extrusion of the resulting MN from the cell have 

been studied in great detail by time-lapse live-cell imaging techniques (149,150). It is also 

reported that MN may also be formed by a budding process following exposure to γ-irradiation 

HOAF SEG. In this process, Rad 51-recombination protein complexes are detectable throughout 

the entire nucleus 3 h after irradiation and then become concentrated into distinct foci before 

being extruded from the nucleus as NBUD. NBUDs have also been shown to be formed when an 

NPB between two nuclei breaks and the remnants shrink back towards the nuclei (151,152). 
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According to the model proposed by Lindbergh et al. (153) MN in binucleate lymphocytes 

primarily derive from lagging chromosomes and terminal acentric fragments during mitosis; 

however, most NBUDs originate from interstitial or terminal acentric fragments. Such NBUDs 

may possibly represent nuclear membrane entrapment of DNA that has been left in cytoplasm 

after nuclear division or from excess DNA that is being extruded from the nucleus. Whether 

NBUDs are also a mechanism to eliminate excess chromosomes in a hypothesised process 

known as aneuploidy rescue remains unclear as there is only limited evidence for this possibility 

(150,154,155). Micronuclei are cytoplasmatic chromatin masses with the appearance of small 

nuclei that arise from chromosome fragments or intact whole chromosomes lagging behind at the 

anaphase stage of cell division. Their presence is a reflection of structural and/or numerical 

chromosome aberrations arising during mitosis (156). 

 

 

1.2. Premalignant and malignant neoplasms of cervix 

 

No form of cancer better documents the remarkable effects of screening, early diagnosis, and 

curative therapy on mortality rate than does cervical cancer. Fifty years ago, carcinoma of the 

cervix was the leading cause of cancer death in women in the United States, but the death has 

declined by two thirds to its present rank as eighth leading cause of cancer mortality (157). 

Pathogenesis. The pathogenesis of cervical carcinoma has been delineated by a series of 

epidemiologic, clinic pathologic, and molecular genetic studies. Epidemiological data have long 

implicated a sexually transmitted agent, which is now established to be HPV. For his discovery 

of HPV as a cause of cervical cancer, Harald zur Hausen was awarded the Noble Prize in 2008. 

HPVs are DNA viruses that are typed based on their DNA sequence and sub grouped into high 

and low oncogenic risk. High oncogenic risk HPVs are currently considered to be the single most 

important factor in cervical oncogenesis (157). 

HPV infection is recognized (Figure 3) as the necessary cause of cervical intraepithelial lesions 

(CIN) and invasive squamous cell carcinoma (SCC) (158). Virtually all cervical cancers are 
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caused by persistent infections with high-risk human papillomavirus (HR-HPV) types which 

may cause cervical intraepithelial neoplasia and invasive cancer (159). 

HR-HPV E6 and E7 oncoproteins are considered essential for the development of cervical cancer 

in persistent HPV lesions by interacting with p53 and pRB tumour suppressor proteins, which 

play an important role in the regulation of normal cell cycle (160). 

An essential prerequisite for the shift from a clinically unapparent transient HPV infection to 

initiation of transformation and maintenance of neoplastic growth of the cell is the continuous 

expression of the viral oncogenes E6 and E7 in basal and parabasal epithelial cells (161). 

 

 

Figure 3. Cervical carcinogenesis. A long-term persistent HPV infection in cervical dysplasia or 

cervical intraepithelial neoplasia (CIN) could possibly lead to cervical cancer by integration of 

viral DNA into the host genome and overexpression of viral genes E6 and E7. Adopted from 

Castillo A (162). 

 

 

There are 15 high oncogenic risk HPVs that are currently identified. From the point of view of 

cervical pathology, HPV 16 and HPV 18 are the most important. HPV 16 alone accounts for 
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almost 60% of cervical cancer cases, and HPV 18 accounts for another 10% of cases; other may 

contribute less than 5% of cases individually (163). 

The risk factors for cervical cancer are to both host and viral characteristics such as HPV 

exposure, viral oncogenicity, inefficiency of immune response, and presence of co-carcinogenes 

(159). These include: 

1. Multiple sexual partners 

2. A male partner with multiple previous or current sexual partners 

3. Young age at first intercourse 

4. High parity 

5. Persistent infection with a high oncogenic risk HPV, e.g. HPV 16 or HPV 18 

6. Immunosuppression 

7. Certain HLA subtypes 

8. Use of oral contraceptives 

9. Use of nicotine 

 

HPVs infect immature basal cells of squamous epithelium or immature metaplastic squamous 

cells present at the squamocolumnar junction. HPVs cannot infect the mature superficial 

squamous cells. Establishing HPV infection in these sites requires damage to the surface 

epithelium, which gives the virus access to the immature cells in the basal of layer of the 

epithelium. Although the virus can infect only the immature squamous cells, replication of HPV 

occurs in the maturing squamous cells and results in a cytopathic effect, “koilocytic atypia’’, 

consisting of nuclear atypia and a cytoplasmic perinuclear halo. Since HPV replicates in 

maturing, non-proliferating squamous cells, it must reactivate the mitotic cycle in such cells. 

Experimental studies have shown that HPV activates the cell cycle by interfering with the 

function of Rb and p53, two important suppressor genes (157). 

Even though HPV has been firmly established as a causative factor for cancer of the cervix, the 

evidence does not implicate HPV as the only factor. A high percentage of young women are 

infected with one or more HPV types during their reproductive years, and only a few develop 

cancer. Other carcinogens, the immune status of the individual, and hormonal and other factors 
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influence whether the HPV infection will regress or persist eventually progressing to cancer 

(159). 

 

1.2.1. Cervical intraepithelial neoplasia 

 

The classification of cervical precancerous lesions has evolved over the time and the terms from 

the different classification systems are currently used interchangeably (table 1) (157). Hence a 

brief review of the terminology is warranted. The oldest classification system classified lesions 

as having mild dysplasia on one end and severe dysplasia/carcinoma in situ on the other. This 

was followed by cervical intraepithelial neoplasia (CIN) classification, with mild dysplasia 

termed CIN I, moderate dysplasia termed CIN II, and severe dysplasia termed CIN III. Because 

the decision with regard to patient management is two-tiered (observation versus surgical 

treatment), the three-tier classification system has been recently simplified to a two-tier, with 

CIN I renamed as low-grade squamous intraepithelial lesion (LSIL) and CIN II and CIN III 

combined into one category referred to as high-grade squamous intraepithelial lesion (HSIL) 

(157). 

 

Table 1. Classification systems for premalignant squamous cevical lesions. Adopted 

from Hendrick Ellenson L et Pirog EC (157) 

Dysplasia/Carcinomain Situ Cervical Intaepithelial 

Neoplasia (CIN) 

Squamous Intraepithelail 

Lesion (SIL)* 

Mild dysplasia CIN I Low-grade SIL (LSIL) 

Moderate dysplasia CIN II High-grade SIL (HSIL) 

Severe dysplasia CIN III High-grade SIL (HSIL) 

Carcinoma in situ CIN III High-grade SIL (HSIL) 

*current classification 

LSILs are associated with productive HPV infection, but show no significant disruption or 

alteration of the host cell cycle. Most LSILs regress spontaneously, with only a small percentage 

progressing to HSIL. LSIL does not progress directly to invasive carcinoma. For these reasons 

LSIL is not treated like a premalignant lesion. In HSIL, there is a progressive deregulation of cell 



  21 
 

cycle by HPV, which results in increased cellular proliferation, decreased or arrested epithelail 

maturation, and a lower rate of viral replication, as compared with LSIL. HSILs are one tenth as 

common as LSILs (157). 

Morphology. The diagnosis of SIL is based on identification of nuclear atypia characterized by 

nuclear enlargement, hyperchromasia (dark staining) presence of coarse chromatine granules, 

and variation of nuclear sizes and shapes. The nuclear changes may be accompanied by 

cytoplasmic halos indicating disruption of the cytoskeleton before release of the virus into the 

environment. Nuclear alteration and perinuclear halo are termed koilocyticatypia. The grading of 

SIL into low and high grade is based on expansion of the immature cell layer from its normal, 

basal location. If the atypical, immature squamous cells are confined to the lower one third of the 

epithelium, the lesion is graded as LSIL; if they expand to two thirds of the epithelial thickness, 

it is graded as HSIL (157). 

More than 80% of LSILs and 100% of HSILs are associated with high oncogenic risk HPVs. 

HPV 16 is the single most common HPV type detected in both categories of lesions (164). 

Although the majority of HSILs develop from LSILs, approximately 20% of cases of HSIL 

develop “de noveo”, without the pre-existing LSIL (165). 

These findings underscore that the risk of developing precancer and cancer is conferred only in 

part by HPV type, and depends also on immune status and environmental factors. Progression 

from squamous intraepithelial lesion (SIL) to invasive carcinoma, when it occurs, may take place 

in a few months to more than a decade (157). 

 

1.2.2. Cervical Cancer 

 

Cervical cancer is the fourth common type of cancer in woman (166). Squamous cell carcinoma 

(SCC) is the most common histologic subtype of cervical cancer, accounting for approximately 

80% of cases. As outlined above, HSIL is an immediate precursor of SCC. The second most 

common type is cervical adenocarcinoma, which constitutes about 15% of cervical cancer cases 

and develops from a precursor lesion called adenocarcinoma in situ. Adenosquamous and 

neuroendocrine carcinomas are rare cervical tumours that account for the remaining 5% of cases. 
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All of the above tumour types are caused by high oncogenic risk HPVs. The peak of incidence of 

invasive cervical carcinoma is 45 year (157). 

Infection by “highly oncogenic” Human Papillomavirus (HPV) is essential for cervical cancer 

development (167). However, although infection by highly oncogenic HPVs is essential for the 

development of cervical cancer, it alone is not sufficient; therefore, other cancer related risk 

factors such as host genetic factors (i.e., gene and chromosome alterations, changes in levels of 

tumour suppressors and activators) are necessary for this disease to develop (168,169). 

Therefore, there is an urgent need to clarify the molecular mechanisms behind cervical cancer. 

Despite the presently available screening tests, nearly 266,000 deaths and 528,000 new cases of 

cervical cancer occur annually around the world; this finding shows the inadequacy of existing 

screens and the need for effective screening strategies (166). Consequently, the elucidation of 

potential biomarkers for the screening, diagnosis, and monitoring of cervical cancer constitutes a 

significant research area for further research. 

The computational integration of biomolecular networks with data from different omic levels 

represents the core of research in the field of systems biology. This interdisciplinary field 

provides valuable information on genome reprogramming under disease conditions and relevant 

biological entities that might be considered potential diagnostic or therapeutic targets (170). In 

this context, considering the unclear etiology of cervical cancer and the inaccuracy of present 

screening methods, systems-level approaches are needed. 

 

 

Morphology. SCC may manifest as either fungating (exophytic) or infiltrative cancers. On 

histologic examination, SCC are composed of nests and tongues of malignant squamous 

epithelium, either keratinizing or nonkeratinizing (157). 

In cases in which the medical diagnosis of cervical cancer is made at a late stage, the mean 

survival is less than one year (168); therefore, it is crucial to develop effective screening tests 

that are capable of providing early detection and prevention. Pap smear is widely used in 

screening; however, there are limitations regarding its specificity and sensitivity (171). The 

search for new methods that can improve the early detection of cervical cancer could reduce the 

morbidity and mortality of patients. The researchers have demonstrated that cancer is a 

multistage process that results from an accumulation of multiple genetic changes (172,173).  The 
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acquisition of genomic instability, a condition that predisposes a cell to accumulate stable 

genome mutations, represents an early step in the process of carcinogenesis (15). Each genetic 

alteration or mutation, whether an initiating or a progression-associated event, can be mediated 

through a gross chromosomal change and therefore has the potential to be cytogenetically 

detectable (174). Therefore, it is imperative to use some biomarkers of DNA damage due to 

genomic instability to predict cancer risk as well as to identify high-risk individuals (175). 

 

 

1.3. Micronuclei in peripheral blood lymphocytes 

 

Assuming that the mechanisms for the induction of chromosomal damage are similar in different 

tissues, the extent of chromosomal damage evaluated in lymphocytes and other surrogate tissues 

is likely to reflect the level of damage in cancer-prone tissues and, in turn, cancer risk (176). 

It is evident that multiple molecular mechanisms can lead to the formation of MN, NPB and 

NBUD (Table 2). These biomarkers are observed the best in cytokinesis-block micronucleus 

cytome (CBMN cyt) assay, which allows these events to accumulate in cells that have completed 

DNA synthesis and mitosis, which are essential for their expression (177). 

Scientists have demonstrated that the level of genetic damage in peripheral blood lymphocytes 

(PBL) reflects the amount of damage in the precursor cells, which subsequently leads to the 

carcinogenic process in target tissues (176,178,179). The use of biomarkers associated with this 

event may provide effective tools for the early detection of the changes related to cancer. 

One of the cytogenetic biomarkers for predicting cancer risk in humans is the micronucleus 

(MN) in peripheral blood lymphocytes (180,181). 

MN and other nuclear anomalies such as nucleoplasmic bridges (NPBs) and nuclear buds 

(NBUDs) are biomarker of genotoxic events and manifestations of chromosomal instability that 

are often seen in cancer (177). 
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Table 2. Molecular events associated with expression of micronucleus, nucleoplasmic bridge 

and nuclear bud.  Adopted from Fenech M (177) 

CBMNcyt assay 

Biomarker 

Molecular events associated with biomarker 

MICRONUCLEUS Lagging acentric chromosome or chromatid         

fragment at anaphase 

Misrepair of DNA breaks 

Unrepaired DNA breaks 

Lagging whole chromosomes at anaphase 

Hypomethylation of repeat sequences in   

centromeric and pericentromeric DNA 

Defects in kinetochore proteins or assembly 

Dysfunctional spindle 

Defective anaphase checkpoint genes 

Unresolved replication stress intermediates 

NUCLEOPLASMIC BRIDGE Dicentric or multicentric chromosomes with 

centromeres pulled to opposite poles of the 

cell at anaphase 

Misrepair of DNA breaks 

Telomere end fusions due to excessively short 

telomeres 

dysfunctional telomeres or lack of telomeres 

Defective separation of sister chromatids at 

anaphase due to failure of decatenation 

Unresolved replication stress intermediates 

NUCLEAR BUD Active process of elimination of nuclear 

material from nucleus 

Elimination of amplified DNA possibly 

generated via BFB cycles 

Elimination of DNA repair DNA-protein 

complexes 

Elimination of excess chromosomes—may 

occur in polyploid cells to facilitate 

aneuploidy rescue 

Shrinkage of the remnants of a broken NPB   

between two nuclei can result in a temporary 

NBUD on one or both nuclei 
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1.4. Micronucleus  in buccal exfoliated cells 

 

The Buccal Micronucleus Assay is a minimally invasive method for studying DNA damage, 

chromosomal instability. This method is increasingly used in molecular epidemiological studies 

for investigating the impact of genotoxin exposure and genotype on DNA damage, chromosome 

malsegregation. The biomarkers measured in this assay have been associated with increased risk 

of cancer diseases (182). 

As well as the MN test in PBL, the MN test in exfoliated buccal cells is an attractive candidate 

for the genotoxicbio monitoring of human populations and individuals, especially because of its 

non-invasive application nature (183). 

In 1997, The International Human Micronucleus (HUMN) Project was founded to coordinate 

worldwide research efforts aimed at using MN assays to study DNA damage in human 

populations (184).  

Among the large number of laboratories engaged in these projects, it is also the Genetic 

Laboratory of the Department of Biology of the Faculty of Natural Sciences, University of 

Pristina, Kosovo, which has made a number of researches using MN assay in different types of 

human and animals cells, contributing to the pooled analyses of the International Collaborative 

Project on Micronucleus Frequency in Human Populations (HUMN) (185). 
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2. HYPOTHESIS 

 

The effect of pre-cancer and cancer lesions of cervix on induction of the genetic instability can 

be determined using the (MN) assays in exfoliated buccal cells and peripheral blood 

lymphocytes. 
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3. AIMS OF THE STUDY 

 

 

3.1.  GENERAL AIM 

The aim of this research is to evaluate the effect of different stages of cervical precancerous 

lesions and cervical cancer in the induction of genetic instability using frequency of micronuclei 

in the peripheral blood lymphocytes and buccal exfoliated epithelial cells 

 

3.2. SPECIFIC AIMS 

 

1. To determine the frequency of MN in buccal cells and peripheral blood lymphocytes in 

healthy individuals, patients with LSIL, patients with HSIL and patients with invasive squamous 

cell carcinoma.  

2. To determine the correlation of MN frequency in buccal cells and peripheral blood 

lymphocytes of healthy individuals, patients with LSIL, patients with HSIL and patients with 

invasive squamous cell carcinoma. 
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4. MATERIALS AND METHODS 

 

 

4.1. Materials /Subjects 

 

This doctoral thesis was conducted in the Faculty of Natural Sciences - Department of Biology, 

University of Pristina, and Institute of Pathology and Gynecology and Obstetrics Clinic of 

University Clinical Center of Kosovo, Medical Faculty, University of Pristina, Kosovo. 

The study included 100 subjects aged between 26 and 68 years, of which 80 female patients were 

previously histologically diagnosed with: 

 low-grade squamous intraepithelial lesions (LSIL) (n= 20) 

 high-grade squamous intraepithelial lesions (HSIL) (n= 40) 

 invasive squamous cell carcinoma (SCC) of cervix (n=20)  

and the control group included healthy women, negative for intraepithelial squamous lesions 

(n=20) 

 

This study was approved by the ethical committee of the University Clinical Centre of Kosovo 

(No. 563, date: 07 February 2012). All subjects were informed about the study and gave a 

written consent for the participation. 

Exclusion criteria: None of the subjects had any chemotherapy or radiotherapy, history of cardiac 

disease, infective disease and did not consume alcohol or cigarettes. 

The chosen sample was very homogenous. They were collected in a period of time for about 

three years. 
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4.2. Methods 

 

4.2.1. Cytokinesis-block micronucleus cytome (CBMN cyt) assay 

 

The CBMN cyt assay was prepared and scored according to the method of Fenech (25) and  

Fenech and Morley (186). 

Venous blood samples were obtained from 20 patients histologically diagnosed with LSIL, 40 

patients with HSIL, 20 patients with SCC and 20 healthy women. 

PROCEDURE 

Culture of lymphocytes (TIMING 72h) 

Peripheral blood samples (5 ml) were collected by heparinized sterile injector. Whole blood (0.5 

ml) was added to 5 ml of complete medium for the cultivation of cells PBMax Karyotyping 

(Invitrogen, Carlsbad, CA). All cultures were set up in duplicates and incubated at 37 °C up to 

72 hours. 

 

Addition of Cytochalasin B to culture (TIMING 10 min) 

Binucleated cells were accumulated by adding cytochalasin B (Cyt B) (Sigma-Aldrich, St. Louis, 

MO) to a final concentration of 3μg/ml at the 44th h following the initiation of the culture sample.  

 

Harvesting of cells using centrifugation (TIMING approximately 30 min) 

At the end of 72h, samples were centrifuged and re-suspended in 0.075 M KCl at 4°C for 3 min 

for hypotonic treatment. Cells were fixed with methanol–acetic acid (3:1) three times. 

 

Drying, fixing and staining of cells and slide preparation (TIMING approximately 30 min) 

The centrifuged cells were resuspended in a small volume of fixative and spread onto the 

specially prepared, cold and lamp-dried slides. The slides were stained with 5% Giemsa solution 

for 10 minutes.  

 

Slide Scoring (TIMING 40 min per slide) 
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The cells were analysed under light-microscopy (x400), by scoring 1000 binucleated 

lymphocytes (500 per each culture) per subject, in which the number of MNi, NPBs and NBUDs 

in PBL were scored by two independent scorers. 

 

Scoring criteria in PBL 

 

Criteria for selecting BN cells suitable for scoring MNi, NPBs and NBUDs 

The cytokinesis-blocked BN cells that may be scored for MN, NPB and NBUD frequency should 

have the following characteristics:  

 The cells should be binucleated. 

 The two nuclei in a binucleated cell should have intact nuclear membranes and be 

situated within the same cytoplasmic boundary. 

 The two nuclei in a binucleated cell should be approximately equal in size, staining 

pattern and staining intensity.  

 The two nuclei within a BN cell may be attached by a nucleoplasmic bridge, which is no 

wider than 1/4th of the nuclear diameter. 

 The two main nuclei in a BN cell may touch but ideally should not overlap each other. A 

cell with two overlapping nuclei can be scored only if the nuclear boundaries of each 

nucleus are distinguishable.  

 The cytoplasmic boundary or membrane of a binucleated cell should be intact and clearly 

distinguishable from the cytoplasmic boundary of adjacent cells.  

Criteria for scoring micronuclei in PBL 

Micronuclei are morphologically identical to, but smaller, than nuclei. They also have the 

following characteristics:  

 The diameter of MNi in human lymphocytes usually varies between 1/16th and 1/3rd of 

the mean diameter of the main nuclei, which corresponds to 1/256th and 1/9th of the area 

of one of the main nuclei in a BN cell, respectively.  

 MNi are non-refractile and they can therefore be readily distinguished from artefact such 

as staining particles. 

 MNi are not linked or connected to the main nuclei. 
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 MNi may touch but not overlap the main nuclei and the micronuclear boundary should be 

distinguishable from the nuclear boundary. 

 MNi usually have the same staining intensity as the main nuclei but occasionally staining 

may be more intense.  

 

Criteria for scoring nucleoplasmic bridges in PBL 

 An NPB is a continuous DNA-containing structure linking the nuclei in a binucleated 

cell. NPBs originate from dicentric chromosomes (resulting from misrepaired DNA 

breaks or telomere end fusions) in which the centromeres are pulled to opposite poles 

during anaphase. They have the following characteristics:  

 The width of an NPB may vary considerably but usually does not exceed 1/4th of the 

diameter of the nuclei within the cell. 

 NPBs should also have the same staining characteristics as the main nuclei. 

 On rare occasions, more than one NPB may be observed within one binucleated cell.  

 A binucleated cell with an NPB may contain one or more MNi.  

 BN cells with one or more NPBs and no MNi may also be observed.  

It may be more difficult to score NPBs in BN cells with touching nuclei, and it is therefore 

reasonable to specify whether NPBs were scored in all BN cells regardless of proximity of nuclei 

within a BN cell or whether they were scored separately in those BN cells in which nuclei were 

clearly separated and those BN cells with touching nuclei. There is not enough evidence yet to 

recommend scoring NPB only in BN cells in which nuclei do not touch. 

 

Criteria for scoring nuclear buds in PBL 

An NBUD represents the mechanism by which a nucleus eliminates amplified DNA and DNA 

repair complexes. NBUDs have the following characteristics: 

 NBUDs are similar to MNi in appearance with the exception that they are connected with 

the nucleus via a bridge that can be slightly narrower than the diameter of the bud or by a 

much thinner bridge depending on the stage of the extrusion process.  

 NBUDs usually have the same staining intensity as MNi.  
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 Occasionally, NBUDs may appear to be located within a vacuole adjacent to the nucleus. 

 If it is difficult to determine whether the observed nuclear anomaly is an MN touching the 

nucleus or a nuclear bud, it is acceptable to classify it as the latter. 

 

 

 

4.2.2. Buccal Micronucleus Assay 

 

The MN in BEC was prepared and scored according to the method of Tolbert et al. (187) and 

Thomas et al. (182). 

 

 

PROCEDURE: 

 

Buccal cell collection (TIMING 10 min) 

Buccal epithelial cells were collected simultaneously with the peripheral blood samples from 

patients, as well as, controls. Prior to buccal cell collection the mouth was rinsed thoroughly with 

water to remove any unwanted debris. Small headed toothbrushes were used to collect buccal 

cells by rotating the brush 20 times in a circular motion against the inside of the cheek, starting 

from a central point and gradually increasing in circumference to produce an outward spiral 

effect. 

 

Buccal cell harvesting and slide preparation (TIMING 2 h) 

The heads of the brushes were individually placed into separate 30 ml yellow top containers, 

containing buccal cell buffer (0.01 M Tris-HCL; Sigma T-3253), 0.1 M EDTA tetra sodium salt 

heads (Sigma E5391), 0.02 Sodium chloride (Sigma S5886) at pH 7.0 and agitated to dislodge 

cells. Cells were transferred into separate TV-10 centrifuge tubes and spun for 10 min at 1500 
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rpm (Sigma 2000). Slides containing two spots of cells were air dried for 10 min and then fixed 

in a mixture of ethanol and acetic acid (3:1) for 10 min.  

 

 

Buccal cell staining for microscopy (TIMING 30 min) 

After that, slides were air dried for another 10 minutes prior Giemsa staining. 

 

 

Scoring (TIMING 60-80 min per slide) 

The micro nucleated cells were analysed under light-microscopy (x 400), by scoring 2000 buccal 

exfoliated cells (per subject), by two independent scorers.  

 

 

Criteria for identifying and scoring the MN in the Buccal Micronucleus Assay 

Cells with micronuclei are characterized by the presence of both a main nucleus and one or more 

smaller nuclear structures called micronuclei (MNi). The micronuclei are round or oval in shape 

and their diameter should range between 1/3 and 1/16 of the main nucleus. MNi have the same 

staining intensity and texture as the main nucleus. The nuclei in micronucleated cells have the 

morphology of nuclei in normal cells. The MNi must be located within the cytoplasm of the 

cells. MNi are scored only in differentiated cells with uniformly stained nuclei. Cells, which are 

pyknotic (i.e., shrunken nuclei), and have condensed chromatin or karyorrhectic nuclei (see 

below), are not scored for MNi. 
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4.3. Statistical analysis 

 

One-way ANOVA was performed to assess the significance of differences in study variables 

across study groups (control group, LSIL group, HSIL group and SCC of cervix group) with 

Tukey’s HSD post-hoc test for multiple comparisons. Independent samples T-test was performed 

to assess the significance of differences in study variables in two groups. Pearson’s correlation 

test was performed to examine the relationship between study variables in study groups. The 

results are expressed as mean± standard deviation (SD). All statistical analyses were done with 

SPSS, version 20.0 (SPSS Inc., Chicago, IL). A value of p<0.05 was considered statistically 

significant.  
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5. RESULTS 

 

 

5.1. Analysis of results in the overall number of patients  

 

- Analysis of the MN frequency in BEC, MN in PBL as well as NPB and NBUD in 

PBL between patients group and control group 

 

Independent samples T-test showed a highly statistically significant difference between the 

patients and the control group in all four study variables (Table 3, Figure 4). 

Table 3, shows statistically significant difference in MN in BEC and MN in PBL between patient 

group (n=80) and control group (n=20) (p< 0.001) as well as for NPB and NBUD in PBL 

between patients and control group (p<0.001). 

 

Pearson’s correlation revealed a statistically significant positive correlation between the variables 

in patients group (table 4), especially, a strong significant positive correlation was found between 

MN in PBL and MN in BEC (r=0.502 and p<0.0001) (Figure 5); between MN in PBL and NPB 

in PBL(r=0.559 and p< 0.0001) (Figure 6);  between MN in PBL and NBUD in PBL (r=0.415 

and p< 0.0001) (Figure 7) and between NPB in PBL and NBUD in PBL(r=513 and p<0.0001) 

(Figure 8). Moderate significant positive correlation was found between MN in BEC and NPB in 

PBL (r=374 and p<0.001) (Figure 9) as well as between MN in BEC and NBUD in PBL (r=364 

and p<0.001) (Figure 10).  
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Table 3. The frequency of MN in BEC and PBL, frequency of NPB and NBUD in PBL, 

between control group (n=20) and overall number of patients (n=80) 

 MN in BEC MN in PBL NPB in PBL NBUD in PBL 

Mean±SD Min-

Max 

Mean±SD Min-

Max 

Mean±SD Min-

Max 

Mean±SD Min-

Max 

Control 

group 

(n=20) 

3.15±1.22 2-6 3.00±1.83 1-9 0.70±1.45 0-6 0.20±0.52 0-2 

Patients  

(n=80) 

6.32±0.73 0-20 7.66±4.79 1-22 1.72±2.43 0-15 1.07±1.37 0-7 

P-value A:B, p<0.001* 

 

A:B, p<0.001* 

 

A:B, p= 0.001* 

 

 

A:B, p<0.001* 

 

 

*Statistically significant value is considered when p<0.05; A-Control group; B- Patients. MN -

micronucleus; BEC – buccal exfoliated cell; PBL-peripheral blood lymphocytes; NPB- 

nucleoplasmic bridge; NBUD- nuclear bud 
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Figure 4. Frequencies of MN in BEC, MN, NPB and NBUD in PBL of control group (n=20) and 

overall number of patients (n=80). MN - micronucleus; BEC – buccal exfoliated cell; PBL-

peripheral blood lymphocytes; NPB- nucleoplasmic bridge; NBUD- nuclear bud 
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Table. 4. Correlation between variables (MN in BEC, MN in PBL, NPB in PBL and NBUD in 

PBL) in two main groups (control and overall number of patients) 

 

  MN in 

PBL:MN 

in BEC 

MN in 

PBL:NPB 

in PBL 

MN in 

PBL:NBUD 

in PBL 

MN in  

BEC 

:NPB in 

PBL 

MN in 

BEC: 

NBUD in 

PBL 

NPB in 

PBL: 

NBUD in 

PBL 

Control 

group(n=

20) 

r 0.164 0.217 0.658 0.322 0.443 0.083 

p 0.490 0.358 0.002* 0.167 0.050* 0.728 

Patients 

group 

(n=80) 

r 0.502 0.559 0.415 0.374 0.364 0.513 

p 0.000*** 0.000*** 0.000*** 0.001** 0.001** 0.000*** 

*Statisticlly siginificant positive correlation is considered when p<0.05 

 **Moderate statistically significant positive correlation is considered when p<0.001 

*** Strong statistically significant positive correlation is considered when p<0.00001 

 

MN - micronucleus; BEC – buccal exfoliated cell; PBL-peripheral blood lymphocytes; NPB- 

nucleoplasmic bridge; NBUD- nuclear bud 
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+   

Figure 5. Results of Pearson’s correlation between MN in PBL and MN in BEC. MN - 

micronucleus; PBL-peripheral blood lymphocyte; BEC – buccal exfoliated cell 

 

 

Figure 6. Results of Pearson’s correlation between MN in PBL and NPB in PBL. MN - 

micronucleus; PBL-peripheral blood lymphocytes; NPB- nucleoplasmic bridge 
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Figure 7. Result of Pearson’s correlation between MN in PBL and NBUD in PBL.MN - 

micronucleus; PBL-peripheral blood lymphocytes; NBUD- nuclear bud 

 

 

Figure 8. Result of Pearson’s correlation between NPB in PBL and NBUD in PBL. NPB- 

nucleoplasmic bridge; PBL-peripheral blood lymphocytes; NBUD- nuclear bud 
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Figure 9. Result of Pearson’s correlation between MN in BEC and NPB in PBL. MN - 

micronucleus; BEC – buccal exfoliated cell; NPB- nucleoplasmic bridge; PBL-peripheral blood 

lymphocytes 

 

Figure 10. Result of Pearson’s correlation between MN in BEC and NBUD in PBL. MN -

micronucleus; BEC – buccal exfoliated cell; PBL-peripheral blood lymphocytes; NBUD- nuclear 

bud 
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5.2. Analysis of results in each group of patients  

 

- Analysis of MN in BEC, MN in PBL as well as NPB in PBL and NBUD in PBL 

between LSIL, HSIL, SCC group and control group 

 

One-way ANOVA showed statistically significant differences (p<0.001) between groups in all 

four study variables (Figure 11). 

 

Figure 11. Results of one-way ANOVA considering frequencies of MN in BEC, MN in PBL, 

NPB in PBL and NBUD in PBL across studied groups.MN - micronucleus; BEC – buccal 

exfoliated cell; PBL-peripheral blood lymphocytes; NPB- nucleoplasmic bridge; NBUD- nuclear 

bud 
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5.2.1.   Analysis of MN in PBL  

 

Multiple comparisons with Tukey’s post-hoc test were run to show which groups differed the 

most from each other. 

Tukey’s post-hoc test showed there was a statistically significant difference in MN in PBL 

between SCC group and control, LSIL and HSIL group (p< 0.00001, p<001 and p<0.01, 

respectively) (Table 5), as well as between LSIL group and HSIL group (p=0.01), and HSIL 

group and control group (p<0.001), but no statistically significant difference between LSIL 

group and control group (p=0.824) (Table 5, Figure 12, 13 ).  

 

 

 

Table 5. The frequency of MN in PBL between LSIL, HSIL, SCC and control group 

Study groups 

 

MN in PBL 

Mean±SD Min-Max 

Control group (n=20) 3.00±1.83a 1-9 

LSIL group (n=20) 3.90±2.77b 1-11 

HSIL group (n=40) 7.50±3.23c 2-15 

SCC group of cervix (n=20) 11.75±4.74d 3-22 

p-value 0.000000 

* Statistically significant value is considered when p<0.05;  a-control group; b-LSIL; c-HSIL; 

d-SCC 

d:a, p<0.00001; d:b, p<0.001; d:c, p<0.01; c:a, p<0.001; c:b,p<0.01; b:a,p=824 

 

MN - micronucleus; PBL-peripheral blood lymphocytes; LSIL - low-grade squamous 

intraepithelial lesions; HSIL - high-grade squamous intraepithelial lesions; SCC - invasive 

squamous cell carcinoma  
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Figure 12. Binuclear lymphocytes (BN) in CBMN cyt assay. The arrow show normal cell 

cytokinesis-blocked. Giemsa. (x 400). 
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Figure 13. Binuclear lymphocytes (BN) in CBMN cyt assay. BN containing MN (black arrow). 

Giemsa. (x 400). MN - micronucleus. 
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5.2.2. Analysis of NPB in PBL 

 

 

A statistically significant difference was shown also in NPB in PBL between SCC group of 

cervix and other study groups (p=0.01, p<0.01 and p=0.006, respectively), but not between LSIL 

group and HSIL group (p=0.377) and between LSIL and HSIL groups and control group 

(p=0.996 and p=0.534, respectively) (Table 6, Figure 14). 

 

Table 6. The frequency of NPB in PBL between LSIL, HSIL, SCC and control group 

Study groups NPB in PBL 

Mean±SD Min-Max 

Control group (n=20) 0.70±1.45a 0-6 

LSIL group (n=20) 0.55±0.76b 0-2 

HSIL group (n=40) 1.47±2.09c 0-11 

SCC group of cervix (n=20) 3.40±3.25d 0-15 

p-value 0.000101 

* Statistically significant value is considered when p<0.05;  a-control group; b-LSIL; c-HSIL; 

d-SCC  

d:a, p=0.01 ;  d:b, p<0.01;  d:c, p=0.0061;   c:a, p=0.534;  c:b, p=0.377;  b:a,p=0.996 

 

NPB - nucleoplasmic bridge; PBL-peripheral blood lymphocytes; LSIL - low-grade squamous 

intraepithelial lesions; HSIL - high-grade squamous intraepithelial lesions; SCC - invasive 

squamous cell carcinoma  
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Figure 14. Binuclear lymphocytes (BN) in CBMN cyt assay. BN containing NPB (black arrow). 

Giemsa. (x 400). NPB- nucleoplasmic bridge 
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5.2.3. Analysis of NBUD in PBL 

 

As for NBUD in PBL, a statistically significant difference was shown between SCC group of 

cervix and control group and LSIL group (p<0.001 and p=0.002, respectively), as well as 

between HSIL group and control group (p=0.033), but no statistically significant difference 

between SCC group of cervix and HSIL group (p=0.195), LSIL group and HSIL group 

(p=0.103) as well as between LSIL and control group (p=0.978) (Table 7, Figure 15 ). 

 

Table 7. The frequency of NBUD in PBL between LSIL, HSIL, SCC and control group 

Study groups NBUD in PBL 

Mean±SD Min-Max 

Control group (n=20) 0.20±0.52a 0-2 

LSIL group (n=20) 0.35±0.67b 0-2 

HSIL group (n=40) 1.10±1.41c 0-7 

SCC group of cervix (n=20) 1.75±1.52d 0-5 

p-value 0.000137 

* Statistically significant value is considered when p<0.05;  a - control group; b - LSIL; c - 

HSIL; d -SCC 

d:a, p<0.001; d:b, p=0.002; d:c, p=0.195;  c:a, p=0.033;  c:b, p=0.103; b:a, p=0.978 

NBUD – nuclear bud; PBL - peripheral blood lymphocytes; LSIL - low-grade squamous 

intraepithelial lesions; HSIL - high-grade squamous intraepithelial lesions; SCC - invasive 

squamous cell carcinoma  
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Figure 15.  Binuclear lymphocytes (BN) in CBMN cyt assay. BN containing NBUD (black 

arrow). Giemsa. (x 400). NBUD – nuclear bud 
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5.2.4. Analysis of MN in BEC 

 

Multiple comparisons with Tukey’s post-hoc test show which groups differed the most from 

each other and showed that there was a statistically significant difference in MN in BEC between 

SCC group of cervix and all other study groups (p<0.001), reached a borderline significance 

between LSIL groups and HSIL group (p=0.50), and no statistically significant difference 

between LSIL and HSIL groups with the control group (p=0.996 and p=0.094, respectively) 

(Table 8, Figure 16). 

 

 

Table 8. The frequency of MN in BEC between LSIL, HSIL, SCC and control group  

Study groups MN in BEC  

Mean±SD Min-Max 

Control group (n=20) 3.15±1.22a 2-6 

LSIL group (n=20) 2.95±1.57b 1-6 

HSIL group (n=40) 4.92±3.06c 0-14 

SCC group of cervix (n=20) 12.50±3.90d 6-20 

p-value 0.000000 

* Statistically significant value is considered when p<0.05;  a - control group; b - LSIL; c - 

HSIL; d -SCC 

d:a, p<0.001 ;  d:b, p<0.001;  d:c, p=0.001;   c:a, p=0.094;  c:b, p=0.50;  b:a,p=0.996 

MN - micronucleus; BEC–buccal exfoliated cell; LSIL - low-grade squamous intraepithelial 

lesions; HSIL - high-grade squamous intraepithelial lesions; SCC - invasive squamous cell 

carcinoma  
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Figure 16. MN test in BEC. Buccal exfoliated cell with MN (black arrow). Giemsa. (x 400). MN 

– micronucleus; BEC - buccal exfoliated cell 

 

 

Independent samples T-test showed statistically significant difference between HSIL groups 

(CIN 2 and CIN 3) in MN in PBL (p=0.04) but no significant difference between groups was 

shown in other study variables (MN in BEC, NPB in PBL and NBUD in PBL). 
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- Correlation between variables (MN in BEC, PBL; NPB and NBUD in PBL) in LSIL, 

HSIL, SCC and control group 

 

Pearson’s correlation showed a strong positive correlation between MN in PBL and NPB in PBL 

in SCC group (r=0.594, p=0.006); between MN in PBL and NBUD in PBL in control group 

(r=0.658, p<0.02). Moderate positive significant correlation was shown between NPB in PBL 

and NBUD in PBL (r=0.473, p<0.035) in LSIL group; between MN in PBL and MN in BEC 

(r=0.378, p<0.016) in HSIL group. The other correlation between variables didn’t show any 

significant correlation between them (Table 9, Figure 17-22). 

Table 9. Pearson’s correlation coefficients and significance for all variables in all study groups 

  MN in 

PBL:MN 

in BEC 

MN in 

PBL:NPB 

in  PBL 

MN in  

PBL:NBUD 

in  PBL 

MN in 

BEC 

:NPB in 

PBL 

MN in 

BEC: 

NBUD in 

PBL 

NPB in 

PBL: 

NBUD in 

PBL 

Control 

group(n=20) 

r 0.164 0.217 0.658 0.322 0.443 0.083 

p 0.490 0.358 0.002 0.167 0.050 0.728 

LSIL group 

(n=20) 

r 0.156 0.328 0.473 -0.196 0.317 0.119 

p 0.512 0.158 0.035 0.407 0.173 0.618 

HSIL group 

(n=40) 

r 0.378 0.265 0.214 0.198 0.127 0.793 

p 0.016 0.099 0.185 0.220 0.436 0.0000 

SCC group 

(n=20) 

r -0.235 0.594 0.283 -0.021 0.253 0.043 

p 0.319 0.006 0.226 0.931 0.281 0.858 

Differences were considered statistically significant at p<0.05.  MN - micronucleus; BEC – 

buccal exfoliated cell; PBL-peripheral blood lymphocytes; NPB- nucleoplasmic bridge; NBUD- 

nuclear; LSIL - low-grade squamous intraepithelial lesions; HSIL - high-grade squamous 

intraepithelial lesions; SCC - invasive squamous cell carcinoma 
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Figure 17. Relationship between frequency of MN in BEC and MN in PBL, within different 

groups (Pearson’s Correlation). MN - micronucleus; BEC – buccal exfoliated cell; PBL-

peripheral blood lymphocytes 

 

Figure 18. Relationship between frequency of MN in PBL and NPB in PBL, within different 

groups (Pearson’s Correlation). MN - micronucleus; PBL-peripheral blood lymphocytes; NPB- 

nucleoplasmic bridge 
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Figure 19. Relationship between frequency of MN in PBL and NBUD in PBL, within different 

groups (Pearson’s Correlation). MN - micronucleus; PBL-peripheral blood lymphocytes; NBUD- 

nuclear 

 

 

Figure 20. Relationship between frequency of MN in BEC and NPB in PBL, within different 

groups (Pearson’s Correlation). MN - micronucleus; BEC – buccal exfoliated cell; NPB- 

nucleoplasmic bridge; PBL-peripheral blood lymphocytes 
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Figure 21. Relationship between frequency of MN in BEC and NBUD in PBL, within different 

groups (Pearson’s Correlation). MN- micronucleus; BEC- buccal exfoliated cell; NBUD – 

nuclear bud; PBL - peripheral blood lymphocytes 

 

 

Figure 22. Relationship between frequency of NPB in PBL and NBUD in PBL, within different 

groups (Pearson’s Correlation). NPB - nucleoplasmic bridge; NBUD – nuclear bud; PBL - 

peripheral blood lymphocytes 
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6. DISCUSSION 

 

 

The search of cytogenetic biomarkers for the identification of groups and/or individuals at high 

risk of cancer is an important task in public health (188). Biological markers are important aspect 

of the diagnosis, prognosis and risk assessment of a disease (189).  

The hypothesis of an association between MN frequency and cancer development is supported 

by a number of observations, the most substantial of which include the high MN frequency in 

untreated cancer patients, subjects affected by cancer-prone congenital diseases and in patients 

with different types of cancer (22,178,190,191,192). 

 

In prospective studies evaluating large cohorts of disease-free subjects, an increase in 

micronuclei (MN) frequency in peripheral blood lymphocytes was associated with an increased 

cancer risk at the population level, providing suggestive evidence that this biomarker may be 

predictive of cancer risk (180,181). Many studies were also published on the application of the 

MN test in peripheral lymphocytes in untreated patients with cancer or pre neoplastic lesions, the 

large majority of them showing a significant increase of MN frequency in patients compared to 

control groups (193),  neurodegenerative diseases (194), cardiovascular diseases and diabetes 

(195). Moreover, an increased MN frequency was detected in subjects affected by cancer-

associated congenital syndromes characterized by a deficiency in DNA damage response 

(196,197). Consequently, there is great interest in the identification and validation of biomarkers 

whose function may reveal insights into critical early events in cervical carcinogenesis and may 

therefore be of utility as potential markers for cancer risk. Considering the fact that no research 

with MN, NPB and NBUD has been done yet in patients with cervical lesions, especially in 

surrogate tissues, our interest was to investigate the genome instability of those patients in 

surrogate tissues. 
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6.1.  The frequency of MN, NPB and NBUD in PBL 

 

The CBMN cyt assay enables measurement of MN as a biomarker of chromosome breakage and 

whole chromosome loss; NPB as a biomarker of dicentric chromosomes that result from 

telomere end fusions or DNA mis-repair; NBUD as a biomarker of gene amplification (25,177). 

Our results indicate that spontaneous genetic damage in lymphocytes of patients having LSIL, 

HSIL and SCC measured through CBMN cyt assay was higher than that of controls, thus 

meaning that genetic instability appeared to exist in lymphocytes of patients having LSIL, HSIL 

and SCC. In the present study, the greatest chromosomal damage was observed in patients 

having SCC. This observation is supported by the conclusions of some other studies 

(198,199,200) on patients having different cervical lesions as well as on patients with different 

cancers (190). Furthermore, the results of this study are in line with existing data that emphasise 

the role of elevated MN frequency in lymphocytes as a biomarker of cancer risk: the first cohort 

studies addressed the risk associated with the frequency of chromosome aberration () in PBL of 

healthy subjects. In 1990, a collaborative initiative carried out in Northern Europe  (201) 

evaluated the risk of cancer incidence in a group of 1548 subjects from Finland, Sweden and 

Norway, free of cancer at the time of cytogenetic analysis. Although the result failed to reach 

statistical significance, the subjects in the highest tertiles of CA frequency experienced a cancer 

incidence almost double compared to the general population [Standardised Incidence Ratio 

(SIR) = 1.82; 95% CI: 0.98–3.01]. These results were consolidated since then by a number of 

new studies, performed in the same population (202,203), in Italy (204,205), in Taiwan (206), in 

the Czech republic (207), in five countries of Central Europe (31), and also by a pooled analysis, 

which assembling a cohort of 22 358 subjects found significant increases of 1.31 (95% CI: 1.07–

1.60) in cancer risk for subjects classified in the medium tertile of CA distribution and 1.41 (95% 

CI: 1.16–1.72) for subjects in the highest tertile (179). 

Since, genetic alterations, including telomere damage, chromosomal aberrations and 

amplification, and epigenetic modifications, are an initial step in the process of carcinogenesis 

(208) and tumour progression (209). Thus, the genomic instability, detected by the MN test can 
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be suggested as markers for cancer (210,211), and its monitoring is important in therapeutics, 

especially with the changes in the chromosomes (209,212). Many reports, provided the basic 

evidence to support the causal role of chromosome damage in carcinogenesis (190). 

Evidence that cytogenetic biomarkers are positively correlated with cancer risk has been strongly 

validated in both cohort and nested case-control studies, leading to the conclusion that 

chromosome aberrations are a relevant marker of cancer risk (213), which reflects the outcome 

of both the genotoxic effects of carcinogens and the genetic host susceptibility. Because of this, 

The International Human Micronucleus (HUMN) Project was created in this sense to coordinate 

worldwide research efforts aimed at using CBMN assays to study DNA damage in human 

populations and to establish standardised protocols so that data comparisons can be made more 

reliably across laboratories and countries (184). The launch of the Human MicroNucleus project 

allowed inclusion of archived data on the MN assay performed in the 1990s’ and early 2000s’, 

which provided the bases for recruiting a cohort large enough for epidemiological studies. The 

study assembled subjects whose lymphocytes had been screened for MN frequency between 

1980 and 2002 and who were free of cancer at the time of testing (180). Overall, data on 6718 

individuals studied in 20 cytogenetic laboratories from 10 countries accounting for a total of 

62 980 person-years were studied. To standardise for the inter-laboratory variability subjects 

were classified according to the percentiles of MN distribution within each laboratory as low, 

medium or high frequency. A significant increase of all cancers incidence was found in medium 

and high MN frequency groups accompanied by a decreased cancer-free survival. This 

association was present in all cohorts for all major cancer sites, especially urogenital and 

gastrointestinal cancer. Our data are also in agreement with the above mentioned data. 

The cytokinesis-block micronucleus (CBMN) assay is a relatively fast and easy technique 

extensively used in molecular epidemiology and cytogenetics. The high reliability and low cost 

of the this assay has contributed to its success worldwide and to the adoption for in vitro and in 

vivo studies of genome damage (180). 

Our data are also in agreement with the many papers that have shown an increased baseline 

frequency of MN and other CBMN end points in PBL of cancer patients (22) , confirming the 

presence of a high genetic instability in cancer. The majority of studies reported the presence of 
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increased MN frequencies in individuals with cancer or with preneoplastic lesions. The number 

of studies performed on PBL is quite high. However, all these studies were mostly based on a 

small sample size. The only exceptions are represented by the study of Duffaud et al. (214), 

performed on PBMC – explanation of abbreviation  from 197 controls and 57 head-and-neck 

cancer patients, and the one of El- Zein et al. (191), on lymphocytes from 139 lung cancer cases 

and 130 controls. Since  CBMN cyt assay measures chromosomal DNA damage, cytostasis and 

cytotoxicity events in the cell population (25) it is generally accepted that events of genetic 

damage such as MN and NBUD may represent a reflection of misrepaired DNA breaks, 

dysregulation on telomere length as well as malfunctions in the mitotic machinery and DNA 

amplification (177). An increase in MN frequency may be considered a biomarker of 

chromosome loss and/or breakage, whereas other anomalies such as NBUD are biomarkers of 

gene amplification and/or removal of unresolved DNA repair complexes (22). Several factors 

may have impact in the MN formation and frequency. Lifestyle habits (smoking, alcohol, 

vitamin intake) and host factors (age, gender) are among them, as well as genetic polymorphisms 

and exposure to specific mutagen agents (27). This is in line with previous investigations on the 

impact of smoking on MN levels, in which the MN rates are higher in non-smokers than in 

smokers reviewed by Nersesyan et al. (215). The reduction of MN levels in smokers reported in 

literature is usually present only in light and moderate smokers, whereas heavy smokers have 

higher levels of MN when also occupational exposure is taken into account (107).  

 

Our results are in accordance with results of many studies, showing an increase of MN frequency 

in patients with different types of precancer and cancer (178,190) as well as the association 

between MN, NPB and NBUD in PBL and different lesions (31,216,217). 

 

It was interesting that we have found increased frequency of NPBs in SCC group compare to 

other groups. Since cancer initiation and progression is driven by a series of changes in DNA 

that control gene expression, resulting in uncontrolled cellular proliferation. The mutation theory 

of cancer causation suggests that cancer-associated gene expression arises from random 

replication errors, exposures to carcinogens (e.g., viruses, radiation, cigarette smoke), or faulty 

DNA repair processes. Although HPV infection is necessary for cervical cancer  development, 

progression to cancer occurs in only a small percentage of HPV-infected women, and a number 
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of studies have shown that incident cervicovaginal HPV is self-limited disease generally lasting 

less than a year in duration (218,219,220). Human papillomaviruses (HPVs) play a critical role 

in the etiology of SCC, with several lines of epidemiologic and experimental evidence 

supporting a role for non-viral (co-carcinogens) in controlling the risk for progression to 

neoplasia among HPV-infected individuals (221,222,223), so it has been possible that unknown 

factors included in the etiology of SCC have an impact in increased frequency of  NPB in 

patients with SCC. Recently, the role of co-carcinogens in cervical carcinogenesis have been 

demonstrated by  Haverkos HW et al (224). 

Our results are consistent with some previous reports concerning the increased frequency of 

NPBs in cancer patients (193,225,251). 

 

 

 

 

 

6.2. The frequency of MN in BEC 

 

Since exfoliated buccal cells are a good source of tissue for monitoring genetic damage including 

aneuploidy, as well as clastogenicity in humans, they have increasingly been recognized in many 

countries (226). 

The MN test is fast, simple, minimally invasive, and cheap so, it is well tolerated among patients. 

Also, there is no need to perform cell cultures (185,227). MN are formed during the transition 

metaphase-anaphase of the mitosis and they can appear as complete chromosomes left out 

usually as a consequence of mitotic apparatus damage (aneuploidogenic effect) or chromosome 

fragments without centromere (clastogenic damage); in both cases, these genetic materials were 

unable to be incorporated to daughter cells (228) and they can be differentiated by their size  

(229) or by centromere presence (230). Such events can occur in a spontaneous manner; 

nevertheless, in presence of certain endogenous (231,232), or exogenous factors (185,233), they 

seem to be increased. So, MN presence can be used as a biomarker of mutagenic and genotoxic 

agents influence (234). 
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The presence of MN can be evaluated in many tissues involving dividing cell (234), for example, 

cervix epithelia (198), bladder, esophagus, and bronchial, nasal, and buccal mucosa (185,227). 

Indeed, MN presence has been used as a biomarker of genotoxicity in animals (235) and 

vegetables  (236). 

The oral cavity has been proposed as a mirror that reflects an individual's health, since oral 

mucosa often reflects disease changes; furthermore, it is the first contact with many pollutants 

like tobacco or alcohol and its affection can also be indicative of a systemic condition or side 

effects due to chemotherapy or radiotherapy administration (226, 237). 

Our results regarding of MN in BEC indicated that genetic damage in buccal cells of patients 

with SCC was higher than that of controls, thus meaning that genetic instability appeared to exist 

in buccal cells of those patients. Increased frequency of MN in BEC of patients with SCC 

compare to HSIL, LSIL patients and control group, are indicative of the gradual destabilization 

of the genome. Progressive increase of MN in BEC in patients from LSIL, to HSIL and SCC, are 

indicative of the gradual destabilization of the genome. 

Our data are also in agreement with data providing the importance of evaluating genome 

instability using the micronucleus test in buccal exfoliated cell. Bloching et al. demonstrated that 

buccal MN rates were 2-fold higher in pharyngeal cancer patients compared to healthy subject 

(238). In our study, the frequency of MN in BEC of patients with SCC were 3-fold higher 

compare to control group. Rajeswari et al. suggested that the first-degree relatives of breast 

cancer patients are at an increased cancer risk based on buccal MN frequencies and alkaline 

comet assay as basal DNA damage in lymphocytes (239). 

The squamous epithelium of buccal mucosa has a unique proliferative response which allows 

cellular population to maintain a constant rate of cell divisions; nevertheless, this characteristic 

makes cells prone to DNA damage, a finding that is relevant since it is estimated that 90% of all 

cancers are derived from epithelial cells (226). 

Oral mucosa cells are useful for determining exposure to compounds not only because they are 

the first line of encounter with several environmental factors like tobacco and alcohol, but also 

since several systemic conditions and treatments limit the proliferation rate of epithelial cells 

(237). Other candidate human tissues have been investigated as potential models to reflect 
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genomic instability status. The buccal mucosa is a stratified squamous epithelial layer that allows 

a minimally invasive approach towards cellular collection. In light of the fact that 90% of 

cancers are epithelial in origin (240), buccal cell utilisation has great epidemiological potential 

both as a non-invasive means for genotoxic assessment and in identifying potential biomarkers 

for future disease assessment. Furthermore, keratinocytes are big cells with abundant cytoplasm 

(237) and they can be studied without the need of a cell culture, which makes this test both 

simple and cheap. For all of these reasons, cells derived from oral mucosa can be used to monitor 

early genotoxic events caused by ingestion or inhalation of carcinogens (241); the capability for 

test performance also makes it ideal for the study of whole populations with increased risk or 

susceptible to cytotoxic damage by means of MN detection (187). The MN assay can also be 

used for epidemiologic studies with life style impact, occupational exposure, nutrition, among 

others (185,233,242). 

 

Also, Bolognesi et al. have demonstrated the importance of MN test in buccal cells in many 

lesions (243). Recently, Souza et al. demonstrated the importance of MN in buccal mucosa cells 

from women submitted to chemotherapy after mastectomy for breast cancer, as 

cytogenetic biomonitoring (244). The evaluation of MN number in buccal mucosa cells shows 

genomic instability caused by malignant tumour in somatic cells of humans (245). 

 

The correlation between the genome instability in two different tissues, e.g. lymphocytes and 

exfoliated buccal cells, might provide a clue for the use of buccal MN as a marker of cancer risk. 

In the present study, analysis of MN frequencies in buccal cells from patients having SCC 

revealed an increased chromosomal instability, similar to the ones in the lymphocytes, although 

the extent of damage varied between two tissues, thus mean that similar genotoxic events may 

cause MN occurrence in both tissues (246). The comprehensive MN assay, approach both in 

lymphocytes (247) and buccal cells, has increasingly been adapted for the last years (248,249). 

Goodson et al. noted 85 examples of environmental chemicals that disrupted key pathways in 

carcinogenesis, designated as “hallmarks of cancer” (223). Those hallmarks include 

hyperproliferative signalling, insensitivity to growth-factor signals, evasion of apoptosis, 

sustained angiogenesis, genomic instability, and mutation, promotion of inflammation, and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688379/#B18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688379/#B18
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dysregulation of metabolism. Individual chemicals in mixtures, such as tobacco smoke and tar-

based vaginal sanitary products, accumulate in cells and tissues and activate important 

carcinogenic pathways (223).  

The DNA damages observed in BEC and PBL of patients with cervical lesion may be due to 

genomic instability, but environmental and other co-carcinogenic factor influences cannot be 

excluded. 

Since many papers have demonstrated the frequency of MN in cervical cells of patients with 

cervical lesions (198,199,200) the originality of this study comes from the evaluation of such 

biomarkers in two different tissues, in surrogate tissues. 

Furthermore, the results of this study are in line with recent data that emphasise the role of 

elevated MN frequency as a biomarker of cancer risk (173,250,251,252). Increased levels of MN 

are indicative of defects in DNA repair and chromosome segregation, which can result in the 

generation of daughter cells with altered genes or the deregulation of gene expression that 

eventually leads to the evolution of the chromosome instability phenotype observed in cancer 

(14,15). 

In the present study, the MN assay was used simultaneously to detect baseline genetic damage 

both in lymphocytes and buccal cells in patients with cervical lesions. Originality of this study 

comes from the assessment of MN frequencies in two different surrogate tissues of patients with 

LSIL, HSIL and SCC of cervix, also from the assessment of other nuclear anomalies such as 

NPBs and NBUDs.  

 

The determination of MN frequency in PBL and BEC as surrogate tissues, can represent an 

additional marker for evaluation of genomic instability in patients with different grade of 

cervical lesions.  
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7. CONCLUSION 

 

Based on the results gained from this study, regarding the frequency of MN in BEC, PBL, as 

well as NPB and NBUD in PBL, in patients with LSIL, HSIL, SCC and control group, was 

concluded: 

1. Highly statistically significant frequency of MN in PBL between patients with SCC 

and patients with LSIL, HSIL and control group as well as between HSIL group and 

control group; increased frequency of MN, but not statistically significant between 

LSIL group and control group. 

 

2. Highly statistically significant frequency of MN in BEC between patients with SCC 

and patients with LSIL, HSIL and control group; progressive increased frequency of 

MN in patients with LSIL and HSIL groups compare to control. 

 

3. A highly statistically significant frequency of NPB and NBUD in PBL was shown 

also between patients with SCC and patients with LSIL, HSIL and control group as 

well as progressive increased frequency in LSIL, HSIL group compare to control 

group. 

 

4. Significantly strong positive correlation between MN in BEC and MN in PBL in 

patients with different grade of cervical squamous lesions. 

 

 

 

To our knowledge, for the first time, the MN assay was used simultaneously to detect 

baseline genetic damage both in lymphocytes and buccal cells in patients with cervical 

squamous lesions. These results confirmed that pathological status of the subjects had a 

significant effect on the increase of MN frequency. 
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It seems that MN frequencies in PBL and BEC and frequencies of NPB and NBUD in 

lymphocytes might be sensitive-markers to detect genomic instability in case of LSIL, 

HSIL and SCC of cervix. To our knowledge, also, this is the first study evaluating the 

correlation between MN in BEC and MN in PBL in patients with LSIL, HSIL and SCC. 

Although larger studies are needed, our data demonstrate the predictive value of MN, 

NPB and NBUD as biomarkers of genomic instability for evaluation of risk level of 

cancer diseases. Since we have found the increased frequencies of such biomarkers even 

in precancerous condition, clinically, the ability to identify high-risk subgroups is 

imperative, such individuals might benefit from early detection and prevention programs. 
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8. ABSTRACT  

 

The frequency of micronuclei in peripheral blood lymphocytes and buccal exfoliated cells 

in women with cervical cancer, Goneta Gashi, 2018 

 

A biological marker is an important aspect of the diagnosis, prognosis and risk assessment of a 

disease. The aim of this study was the evaluation of genomic instability in patients with cervical 

lesions. 

The genetic damages were investigated  in 100 subjects: patients with low grade squamous 

intraepithelial lesions (LSIL; n=20), patients with high grade squamous intraepithelial lesions 

(HSIL; n=20) patients with invasive squamous cervical cancer (SCC; n=20) and healthy women 

(n=20) with cytokinesis-block micronucleus cytome (CBMN cyt) assay in peripheral blood 

lymphocytes (PBL), and buccal micronucleus assay in buccal exfoliated cells (BEC), in order to 

assess the frequency of micronucleus (MN) in PBL and frequency of MN in BEC as well as the 

frequency of other nuclear anomalies such as nucleoplasmic bridges (NPBs) and nuclear bunds 

(NBUDs) in PBL. 

The frequency of MN in BEC, MN in PBL, NPB in PBL and NBUD in PBL were significantly 

higher (p< 0.001), in patients compared to control. Pearson’s correlation revealed a statistically 

significant strong positive correlation between variables in patients groups (p<0.001).  

Although larger studies are needed, our data support the predictive value of MN, NPB and 

NBUD as biomarkers of genomic instability for evaluation of risk level of cervical cancer 

diseases.  

 

Keywords: cytokinesis-block micronucleus cytome assay, micronucleus, cervical lesion, 

genomic instability, the buccal micronucleus assay. 
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9. SAŽETAK (ABSTRACT IN CROATIAN) 

 

Biološki marker predstavlja važan dio u dijagnostici, prognozi i procjeni rizika za određenu 

bolest. Cilj rada bio je procijeniti genomsku nestabilnost kod pacijentica sa cervikalnim lezijama. 

Genetska oštećenja su istraživana kod 100 žena /20 bolesnica sa skvamoznom intraepitelnom 

lezijom niskog stupnja (LSIL), 40 bolesnica sa skvamoznom intraepitelnom lezijom visokog 

stupnja (HSIL), 20 bolesnica sa invazivnim rakom vrata maternice (SCC), 20 žena bez bolesti, 

kao kontrolna skupina/, primjenom testa blokiranja citokineze mikronuklearnog citoma 

(engl.cytokinesis-block micronucleus cytome - CBMN cyt) na limfocitima periferne krvi (PBL) 

te bukalnog mikronuklearnog testa na eksfoliranim bukalnim stanicama (BEC). U radu se takođe 

istražila učestalost drugih nuklearnih anomalija kao što s nukleoplazmatski mostovi (NPB) i 

nuklearni pupoljci (NBUD) u PBL. 

Učestalost MN u BEC, MN u PBL, NPB u PBL i NBUD u PBL značajno je viša (p< 0.001) kod 

bolesnica nego u kontroloj skupini zdravih žena. Pearsonova korelacija upućuje na jaku 

pozitivnu povezanost između varijabli u skupinama pacijentica, što je statistički značajno 

(p<0.001). 

Premda je potrebno daljnje istraživanje na većem uzorku, naši rezultati podržavaju mišljenje da 

prediktivne vrijednosti MN, NPB i NBUD predstavljaju biomarkere genomske nestabilnosti za 

procjenu razine rizika i za nastanak raka vrata maternice.  

Ključne riječi: cytokinesis-block micronucleus cytome test, mikronukleus, cervikalna lezija, 

genomska nestabilnost, bukalni mikronuklearni test. 
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