Detekcija gena virulencije otoka patogenosti \textit{cag} i gena \textit{dupA} izolata \textit{Helicobacter pylori} nakon višestruke neuspjele eradikacijske terapije

DISERTACIJA

Zagreb, 2016.
Dijana Varda Brkić

Detekcija gena virulencije otoka patogenosti cag i gena $dupA$ izolata $Helicobacter pylori$ nakon višestruke neuspjele eradikacijske terapije

DISERTACIJA

Zagreb, 2016.
Disertacija je izrađena u Kliničkom zavodu za kliničku i molekularnu mikrobiologiju KBC Zagreb i u suradnji s Odjelom gastroenterologije i hepatologije i Kliničkim zavodom za patologiju i citologiju KB Merkur.

Voditelj rada: prof. dr. sc. Vanda Plečko

Zahvaljujem svim djelatnicima i kolegama Kliničkog zavoda za kliničku i molekularnu mikrobiologiju koji su mi na bilo koji način pomogli u izradi disertacije.

Zahvaljujem prof. dr. sc. Branki Bedenić na strpljivoj i stručnoj pomoći u ključnim trenucima.

Posebnu zahvalnost dugujem prof. dr. sc. Miroslavi Katičić na nesebičnoj pomoći, pozitivnoj energiji, utrošenom vremenu i pravim smjernicama u izradi ove disertacije.

I na kraju, hvala mojoj obitelji, suprugu i sinovima, te roditeljima, na bezgraničnom strpljenju i podršci tijekom višegodišnjeg rada na disertaciji.

Rad posvećujem njima.
1. UVOD

1.1. Povijesni pregled

1.2. Epidemiologija Helicobacter pylori infekcije

1.2.1. Prevalencija Helicobacter pylori infekcije

1.2.2. Rizični čimbenici za stjecanje Helicobacter pylori infekcije

1.2.3. Prijenos Helicobacter pylori infekcije

1.3. Povezanost Helicobacter pylori s gastroduodenalnim bolestima

1.3.1. Akutna bolest

1.3.1.1. Akutni gastritis

1.3.2. Kronična infekcija

1.3.2.1. Kronični gastritis

1.3.2.2. Peptička ulkusna bolest

1.3.2.3. Neulkusna dispepsija

1.3.2.4. Helicobacter pylori u usnoj šužljeni

1.3.2.5. Gastroezofagealna refluksna bolest (GERB)

1.3.2.6. Karcinom želuca

1.3.2.7. MALT limfom

1.4. Povezanost Helicobacter pylori s ekstragastrointestinalnim bolestima

1.5. Mikrobiološke značajke Helicobacter pylori

1.5.1. Morfologija

1.5.2. Čimbenici virulencije

1.5.2.1. Čimbenici kolonizacije

1.5.2.2. Čimbenici perzistencije

1.5.2.3. Čimbenici indukcije bolesti (geni virulencije)

1.5.3. Povezanost cagPAI i dupA gena
1.6. Eradikacija infekcije *Helicobacter pylori* ... 21

1.6.1. Uzroci neuspjeha eradikacije infekcije *H. pylori* .. 22

1.6.1.1. Otpornost (rezistencija) *H. pylori* na antibiotike.. 23

1.6.1.2. Lučenje želućane kiseline ... 23

1.6.1.3. Pridržavanje uputa o uzimanju lijekova-suradljivost 24

1.6.1.4. Čimbenici virulencije *H. pylori* .. 24

2. HIPOTEZE .. 29

3. CILJEVI ... 30

3.1. Osnovni cilj:.. 30

3.2. Specifični ciljevi: ... 30

4. MATERIJAL I METODE .. 31

4.1. Ispitanici i mjesto istraživanja ... 31

4.2. Uzorci ... 32

4.3. Metode istraživanja ... 33

4.3.1. Kliničke i patohistološke metode .. 33

4.3.2. Mikrobiološke metode ... 35

4.3.2.1. Konvencionalne mikrobiološke metode .. 35

4.3.2.2. Molekularne mikrobiološke metode ... 38

4.4. Kemikalije ... 45

4.5. Medicinski uređaji i pribor ... 48

4.6. Statistička analiza ... 49

5. REZULTATI ... 50

5.1. Opće značajke bolesnika .. 50

5.1.1. Bolesnici prema dobi i spolu .. 50

5.1.2. Bolesnici prema subjektivnim tegobama ... 51

5.1.3. Bolesnici prema endoskopski utvrđenim dijagnozama 52
5.1.4. Bolesnici prema patohistološkom nalazu sluznice želuca ... 53
5.2. Učestalost i karakteristike cagPAI u Helicobacter pylori izolatima 57
5.3. Karakteristike bolesnika prema tipu cagPAI ... 60
5.4. Endoskopske dijagnoze prema tipu cagPAI ... 61
5.5. Patohistološke promjene želučane sluznice prema tipu cagPAI 62
5.6. Učestalost cagPAI gena u Helicobacter pylori izolatima ... 64
5.7. Usporedba cagPAI gena s patohistološkim promjenama želučane sluznice 73
5.8. Usporedba cagPAI gena s endoskopski utvrđenim dijagnozama 75
5.9. DupA gen u Helicobacter pylori izolatima ... 77
 5.9.1. Učestalost dupA gena .. 77
 5.9.2. Karakteristike bolesnika iniciranih s dupA pozitivnim ili dupA negativnim H. pylori ... 80
 5.9.3. Povezanost dupA gena s patohistološkim promjenama želučane sluznice 82
 5.9.4. Pojedinačna usporedba gena jhp0917 i jhp0918 s patohistološkim promjenama želučane sluznice ... 84
5.10. Testiranje osjetljivosti na antimikrobna sredstva ... 86
5.11. Povezanost gena virulencije cagPAI i dupA s antimikrobnom osjetljivošću 92
5.12. Povezanost cagPAI statusa i dupA gena ... 94
6. RASPRAVA ... 95
7. ZAKLJUČCI .. 106
8. SAŽETAK ... 108
9. SUMMARY .. 110
10. POPIS LITERATURE .. 112
11. ŽIVOTOPIS .. 140
POPIS OZNAKA I KRATICA

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Kratica</th>
<th>Croatian Term</th>
<th>English Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. pylori</td>
<td>Helicobacter pylori</td>
<td>Helicobacter pylori</td>
<td>Helicobacter pylori</td>
</tr>
<tr>
<td>DAG</td>
<td>Difuzni antralni gastritis</td>
<td>Difuzni antralni gastritis</td>
<td>Difuzni antralni gastritis</td>
</tr>
<tr>
<td>NSAID</td>
<td>Ne-steroidni protuupalni lijekovi</td>
<td>Ne-steroidni protuupalni lijekovi</td>
<td>Ne-steroid anti-inflammatory drugs</td>
</tr>
<tr>
<td>NUD</td>
<td>Neulkusna dispepsija</td>
<td>Neulkusna dispepsija</td>
<td>Ulcerative gastritis</td>
</tr>
<tr>
<td>EUV</td>
<td>Erozije/ulkus želuca</td>
<td>Erozije/ulkus želuca</td>
<td>Erosions/ulcer of stomach</td>
</tr>
<tr>
<td>EUD</td>
<td>Erozije/ulkus duodenuma</td>
<td>Erozije/ulkus duodenuma</td>
<td>Erosions/ulcer of duodenum</td>
</tr>
<tr>
<td>GERB</td>
<td>Gastroezofagealna refluksna bolest</td>
<td>Gastroezofagealna refluksna bolest</td>
<td>Gastroesophageal reflux disease</td>
</tr>
<tr>
<td>MALT-limfom</td>
<td>limfno tkivo sluznice</td>
<td>(engl. "mucosa-associated-lymphoid-tissue")</td>
<td>Mucosa-associated lymphoid tissue</td>
</tr>
<tr>
<td>BabA protein</td>
<td>antigen krvne grupe</td>
<td>(engl. Blood-group Antigen-binding Adhesin)</td>
<td>Blood-group Antigen-binding Adhesin</td>
</tr>
<tr>
<td>DSBs</td>
<td>dvostruki lomovi</td>
<td>(engl. double-strand breaks)</td>
<td>Double-strand breaks</td>
</tr>
<tr>
<td>HspA</td>
<td>protein toplinskog šoka</td>
<td>(engl. heat shock protein A)</td>
<td>Heat shock protein A</td>
</tr>
<tr>
<td>SOD</td>
<td>superoksid-dismutaza</td>
<td></td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>VacA</td>
<td>vakuolizirajući citotoksin A</td>
<td></td>
<td>Vacuolating cytotoxin A</td>
</tr>
<tr>
<td>cagPAI</td>
<td>citotoksični otok patogenosti</td>
<td>(engl. cytotoxin-associated gene pathogenicity island-cagPAI)</td>
<td>Cytotoxin-associated gene pathogenicity island-cagPAI</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor nekrozis faktor-alfa</td>
<td></td>
<td>Tumor necrosis factor-alpha</td>
</tr>
</tbody>
</table>
T4SS tip IV sekrecijskog sistema
ASPP2 apoptosis-stimulirajući protein
CagA gen citotoksični gen A
 (*engl.* cytotoxin-associated gene A)
CagE gen citotoksični gen E
 (*engl.* cytotoxin-associated gene E)
CagT gen citotoksični gen T
 (*engl.* cytotoxin-associated gene T)
CagM gen citotoksični gen M
 (*engl.* cytotoxin-associated gene M)
LEC lijevi kraj cag-a
 (*engl.* left end of the cag)
DupA gen marker duodenalne ulkusne bolesti
 (*engl.* duodenal ulcer promoting gene A)
IL-8 interleukin-8
EHSG *engl.* The European Helicobacter Study Group
IPP inhibitor protonské pumpe
TNF tumor nekrozis faktor
EFG Ezofagogastroduodenoskopija
MIK minimalna inhibitorna koncentracija
E- test Epsilometer test
DNA deoksiribonukleinska kiselina
 (*engl.* Deoxyribonucleic Acid)
PCR lančana reakcija polimeraze
 (*engl.* Polymerase Chain Reaction; PCR)
CCUG *engl.* Culture Collection University of Gothenburg
AZT Azitromicin
CLR Klaritromicin
MTZ Metronidazol
AMX Amoksicilin
LEV Levofloksacin
<table>
<thead>
<tr>
<th>EUCAST</th>
<th>engl. European Committe on Antimicrobial susceptibility testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>standardna devijacija</td>
</tr>
<tr>
<td>AS</td>
<td>aritmetička sredina</td>
</tr>
</tbody>
</table>
1. UVOD

1.1. Povijesni pregled

Već od 17. stoljeća počelo se razmišljati o vanjskim činiteljima kao i činiteljima sa strane domaćina kao uzrocima želučanih bolesti. Početkom 19. stoljeća smatralo se da samo djelomično adaptirane bakterije mogu proći neoštećeno kroz želudac u crijeva. Također su se neke bakterijske vrste (Sarcina ventriculi) koristile kao indikator smanjenja aciditeta, ako su kolonizirale želudac bile su dijagnostički pokazatelj poremećaja (1).

Ipak, do 1982. godine kada je kultiviran H. pylori iz želuca, većina je istraživača pretpostavljala da je želudac sterilan, te ignorirala prethodna istraživanja (1-4). Nakon rada Marshalla i Warrena u kojem su izolirali H. pylori, tada nazvan Campylobacter pyloridis, ta ispunjavanja Kochovih postulata, započinje novo vrijeme u razumijevanju gastroduodenalne patologije, posebno gastritisna i peptičkog ulkusa (5-7).

1.2. Epidemiologija *Helicobacter pylori* infekcije

Epidemiologija *H. pylori* infekcije se promijenila u zadnjih desetak godina. U većini zemalja bilježi se pad prevalencije, a paralelno s tim bilježi se i pad peptičke bolesti i želučanog karcinoma (10). Kao posljedica toga vidljive su epidemiološke promjene i u drugim bolestima, kao što su gastroezofagealna refluksna bolest, alergije i astma (11).

1.2.1. Prevalencija *Helicobacter pylori* infekcije

studija u Nizozemskoj provedena na 6500 trudnicama našla je 24% prevalencije u Nizozemskih žena, za razliku od 64% prevalencije u žena koje su rođene van Nizozemske (prva generacija imigranata). U ovoj studiji je etnička pripadnost bila strogi prediktor za H. pylori infekciju (13).

U kontrastu sa sjeverno Europskim zemljama visoka prevalencija bilježi se u Portugalu, 84.2% što ga svrstava u zemlje s najvećom prevalencijom u Europi uz Tursku, 82.5% (14,15). Prevalencija je bila manja u populaciji koja živi na jugu zemlje i u čijoj prehrani je zastupljeno više citrusnog voća. Vitamin C je učinkovit u prevenciji mnogih infekcija, pa autori sugeriraju da bi mogao imati i ulogu u H. pylori infekciji (15).

U sjevernoj Americi, kanadska studija prezentirala je 37.9% prevalenciju na temelju pozitivnog histološkog nalaza nakon gastroskopije 203 starosjedioca (16). Zadnja studija iz Meksika potvrdila je visoku prevalenciju H. pylori infekcije u Latinskoj Americi. Od 343 trudne žene iz ruralnog područja Meksika 52.2% bilo je seropozitivno (17).

U Aziji, zadnje publicirane studije pokazale su visoku prevalenciju, od 54%-76% (18-23). Jedino je jedna studija rađena u Saudijskoj Arabiji na zdravim pojedincima imala nisku prevalenciju od 28% (24).

U Kini, studija rađena na 5417 zdravih pojedincara testiranih ureja izdisajnim testom našla je prevalenciju od 63.4% (19). Slične visoke vrijednosti nađene su u Indiji, Kazahstanu i Butanu. U Indiji, prevalencija infekcije varirala je od 58%-62% u osoba s dispeptičkim simptomima (20, 21). U Kazahstanu, među simptomatskim i asimptomatskim slučajevima, prevalencija je bila 76.5% (22). Slično prevalencija od 73.4% nađena je u Butanu, s tim da je bila manja u glavnom gradu u odnosu na ruralna područja, uglavnom povezano s sanitarnim uvjetima (23).
Iz Afrike, nove studije iz Maroke i Etiopije našle su prevalenciju *H. pylori* od 75.5% i 65.7%. Obje studije bilježe porast prevalencije s godinama (25,26). Studija iz Nigerije, histološkim testiranjem našla je 80% prevalenciju, a serološkim testiranjem 93.6% (27).

Nekoliko studija istraživalo je prevalenciju *H. pylori* kod djece. Tako je studija u Belgiji našla prosječnu prevalenciju od 11%, koja je varirala od 3.2% kod djece rođene od roditelja belgijanaca do 60% kod djece rođene od roditelja stranaca koji su došli iz zemalja s visokom prevalencijom *H. pylori* (28).

Bastos i sur. našli su visoku prevalenciju kod 13-godišnjaka iz Portugala, 66.2% (29). U Brazilu, u populaciji starosti 2-19 godina, studija Pacheco i sur. našla je prevalenciju od 41.1% (30). U Kini je zabilježena prevalencija *H. pylori* od 32.1%, a u Iranu 50.5% (31,32).

Ranije provedena studija u Hrvatskoj na populaciji starosne dobi između 20-70 godina pokazala je da u tri regije (sjevernoj, središnjoj i južnoj) prosječna seroprevalencija infekcije iznosi 60.4%, s višom stopom seropozitiviteta u starijoj životnoj dobi. U sjevernim dijelovima Hrvatske seroprevalencija je skoro identična (58.4%), kao u središnjim dijelovima (59.5%). U južnim krajevima seroprevalencija iznosi oko 71.3% (33).

1.2.2. Rizični čimbenici za stjecanje *Helicobacter pylori* infekcije

Spol i dob ne povezuju se s povećanim rizikom od infekcije. Većina studija ne nalazi značajnu razliku *H. pylori* infekcije između muškaraca i žena u odrasloj dobi (12,21,23-26) kao ni kod djece (28,29,32). Nije nađena značajna povezanost između infekcije i starosne dobi u odraslim (13,15,17,21,22,24).

Nekoliko čimbenika povezanih sa stanovanjem povezuje se s povećanim rizikom za stjecanje *H. pylori* infekcije; život u ruralnim područjima (18,23,24), prenapučenim domaćinstvima (24,29), korištenje onečišćene vode za piće (15).

Od životnih navika, pušenje i konzumacija alkohola imaju proturječne rezultate. U većini studija ne povezuje ih se s *H. pylori* infekcijom (22,19,25), dok su neki autori izvjestili da redovito pušenje (15,24) i konzumiranje alkohola predstavlja rizični čimbenik (24). Suprotno, jedna studija navodi kako je redovita konzumacija alkohola zaštitni čimbenik za stjecanje *H. pylori* infekcije (15).

1.2.3. Prijenos *Helicobacter pylori* infekcije

Usprkos visoke incidencije *H. pylori* infekcije, rezervoar i put prijenosa *H. pylori* još uvijek su u potpunosti nejasni.

Trenutne studije govore u prilog tome da se infekcija najčešće prenosi od zaražene osobe na zdravu osobu, bilo oralno-oralnim, gastro-oralnim ili fekalno-oralnim prijenosom. Na gastro-oralni prijenos upućuje i znatno učestaliji prijenos među malom djecom koja često povraćaju, s djece na odrasle osobe. Često se opisuje prijenos s roditelja na djecu, između bliskih rođaka, osoba koje žive u istom kućanstvu (34, 35). Urita i sur. su potvrdili majka-djete prijenos, ali i baka-djete prijenos. Majke najčešće prenose infekciju na djete putem sline koristeći istu žlicu za isprobavanje dječje hrane (36).

Osim toga, mnogi autori sugeriraju da humana infekcija nastaje putem kontaminirane hrane (37,38). Tako je *H. pylori* izoliran iz vode za piće, slavina, stomatoloških sistema za ispranje (39), morske vode, hrane životinjskog porijekla, kao što su ovce i kravlje mlijeko (40-42).
1.3. Povezanost *Helicobacter pylori* s gastroduodenalnim bolestima

1.3.1. Akutna bolest

1.3.1.1. Akutni gastritis

1.3.2. Kronična infekcija

1.3.2.1. Kronični gastritis

Difuzni antralni gastritis (DAG), ograničen je na antrum i povezan je s ulkusom dvanaesnika. Ovaj tip gastritisa češći je u mlađoj životnoj dobi, i to u osoba s normalnom ili povišenom sekrecijom želučane kiseline. Multifokalni akutni gastritis (MAG) pojavljuje se multifokalno uz angularnu incizuru te na granici antruma i korpusa. U početku je sluznica tog dijela infiltrirana polimorfonuklearnim upalnim stanicama, a u kasnijoj fazi razvojem intestinalne metaplasije i displazije, nastupa atrofija. Obu tipa pripadaju grupi kroničnih superficijalnih gastritisa, ali u određenom postotku, postoji tendencija njihove progresije u kronični atrofični gastritis (1-3% na godinu). Rezultat dugotrajne upale jest jedan od tri oblika kroničnih gastritisa: korpus-predominantni, antrum-predominantni, te difuzni, pangastritis (44). Porastom stupnja atrofije smanjuje se broj pozitivnih nalaza *H. pylori*, što je rezultat smanjenja aciditeta, čime uvjeti preživljavanja *H. pylori* postaju nepovoljni.

sluznice (antrum, korpus), tip (mono/polimorfonukleari) i količinu infiltrata (malo, oskudno, srednje obilno ili obilno upalnih stanica) (45).

1.3.2.2. Peptička ulkusna bolest

H. pylori infekcija znatno povećava rizik za razvoj peptične ulkusne bolesti (3-10 puta), bilo da se radi o želučanom ulkusu, bilo o ulkusu na dvanaesniku (46-49). Veza između *H. pylori* infekcije i peptičkog ulkusa najbolje se vidi iz učestalosti nalaza infekcije *H. pylori* među bolesnicima s peptičnim ulkusom (do 95% u bolesnika s ulkusom na dvanaesniku, do 85% u bolesnika s želučanim ulkusom), kao i činjenicom da liječenjem infekcije dolazi do značajne promjene tijeka bolesti s praktičnom eliminacijom rekurencije (50). Superficialni antralni gastritis uzrokovao kolonizacijom *H. pylori* nakon početne prolazne hipoklorhidrije praćen je povećanom sekrecijom gastrina i posljedičnom hiperklorhidrijom. Dugotrajna hiperklorhidrija i povećana razina gastrina dovode do želučane metaplazije na sluznici dvanaesnika. Time ta sluznica postaje dostupna za naseljavanje s *H. pylori*. Ukoliko se isključe bolesnici koji su koristili nesteroidne upalne lijekove, prevalencija *H. pylori* u bolesnika s želučanim ulkusima je također visoka.

Neosporna je činjenica da samo jedan od šest inficiranih ima znakove peptičke ulkusne bolesti. Razlozi za ekspresiju klinički značajne bolesti samo u dijela inficiranih pojedinaca mogu biti genetske osobine domaćina, specifičnost prehrane, čimbenici okoliša, te genske varijacije u *H. pylori* sojeva. Želučani ulkus je povezan s *H. pylori* infekcijom u 50-90% bolesnika. U bolesnika s želučanim ulkusom uz difuzni antralni gastritis može postojati i multifokalni antralni gastritis, te je uz antralnu sluznicu najčešće upalnim promjenama zahvaćena i sluznica korpusa.

Zadnjih godina se istražuje i odnos ne-steroidnih protuupalnih lijekova (NSAID) i *H. pylori*. Neka istraživanja su dokazala da *H. pylori* povećava rizik krvarenja iz peptičkih ulkusa u bolesnika koji koriste NSAID (51), dok također postoje ispitivanja koja navode da *H. pylori* smanjuje rizik krvarenja (52) ili uopće ne utječu na pojavu krvarenja u tih bolesnika (53).
1.3.2.3. Neulkusna dispepsija

Neulkusna dispepsija (NUD) ili funkcionalna dispepsija heterogena je grupa bolesti karakterizirana učestalim, stalnim ili rekuretnim tegobama tipa bolova ili nelagode u gornjem trbuhu za koje se ne može definirati uzrok (47). Mogući mehanizmi kojima H. pylori uzrokuje dispeptičke simptome uključuju oštećenje želučanog motiliteta kao rezultat upalne reakcije i oslobađanja mnoštva iona, citokina, amina, kinina, prostanoida (49). Glad, lučenje želučane kiseline i želučani motilitet regulirani su s grelinom, specifično proizvedenim od želučanih endokrinih odjeljaka i upravo se pojačani intenzitet simptoma povezuje s povišenom razinom grelina u plazmi (49). Sodi i sur. u svojoj studiji nisu našli pozitivan učinak H. pylori eradikacije na simptome NUD-a (54).

1.3.2.4. Helicobacter pylori u usnoj šupljini

Istraživanja su potvrdila povezaost H. pylori sa nekim stomatološkim bolestima, kao što su peridontitis (55), karijes (56), halitoza (57), te upalne ili neoplastične promjene usne šupljine (58). U zadnje vrijeme se istražuje prisutnost kvasaca u usnoj šupljini i njihova moguća uloga kao izvora i rezervoara za H. pylori. Tako su Saniee i sur. svjetlosnim mikroskopom unutar vakuole u Candida kvascu uspjeli vidjeti vijabilne H. pylori (59). Ista grupa autora našla je tragove H. pylori gena u majčinim vaginalnim i oralnim kvascima, otkriće koje pruža dodatne elemente u prilog hipotezi o načinu prijenosa H. pylori prezentiranih ranijih godina (60,61).

1.3.2.5. Gastroezofagealna refluksna bolest (GERB)

Povezanost GERBA i H. pylori još uvijek je kontraverzne. Tako se u posljednjem desetljeću u razvijenim zemljama povećao broj oboljelih od GERB-a, a broj inficiranih s H. pylori se smanjio. Jedno od mogućih objašnjenja jest indirektni utjecaj H. pylori na učestalost GERB-a preko promjene u izlučivanju želučane kiseline. Infekcija s H. pylori u ranoj životnoj dobi uvjetuje razvoj kroničnog gastritisa korpusa želuca s posljedičnim smanjenjem izlučivanja želučane kiseline, a to potom smanjuje opasnost od

1.3.2.6. Karcinom želuca

Unatoč znatnom padu incidencije i mortaliteta u zadnjih šest godina, želučani je karcinom i dalje na trećem mjestu svih uzroka smrti od malignih bolesti, nakon karcinoma pluća i jetre (66). Iako je H. pylori klasificiran kao karcinogen I. reda, ciljevi i analiti logija o fizičkoj primeni infekcije H. pylori i karcinoma želuca. Identificirana je više nepodudarnosti („enigmi“). Tako je veća incidencija želučanog karcinoma u muškaraca (2-3 puta viša) uz gotovo jednaku seroprevalenciju infekcije među spolovima (spolna enigma). Nadalje, visoka prevalencija infekcije H. pylori u nekim područjima niskog rizika od oboljenja od želučanog karcinoma („mediteranska enigma“ ili „afrička enigma“). Bolesnici s ulkusnom bolešću dvanaesnika rijetko obole od karcinoma iako su u pravilu svi inficirani („enigma peptičkog ulkusa“). Ni razlike u prevalenciji infekcije u mlađoj životnoj dobi ne koreliraju sa mortalitetom od želučanog karcinoma („enigma mlađe dobi“). Konačno, najmanje je jasna razlika između ukupnog broja zaraženih i onih u kojih se razvije želučani karcinom (1-3% zaraženih).

Želučana karcinogeneza vrlo je složen proces, a infekcija H. pylori samo je jedan od rizičnih čimbenika (67).

1.3.2.7. MALT limfom

Stalna prenapregnutost imunosnog sustava uzrokovana kontinuiranom infekcijom H. pylori želučane sluznice, dovodi već pri gastritisu do opsežnog nagomilavanja limfoidnih stanica u lamini propriji želučane sluznice. Mogu se naći i limfatični folikuli. Ova uobičajena poliklonalna proliferacija može zbog niza razloga , a ponajprije pod utjecajem H. pylori, prijeći u monoklonalnu i
stvoriti preduvjete za razvoj niskomalignih, a vjerojatno i visokomalignih, B-staničnih MALT-limfoma (engl. „mucosa-associated-lymphoid-tissue“). Histološki, ovi su tumori građeni od nakupina limfocita B, što ih razlikuje od reaktivne infiltracije limfocitima u tijeku uobičajene upale, kada su prisutni pretežno limfociti T. Zbog bliskog odnosa epitelnih stanica sluznice i transformiranih leukocita, lezije koje nastaju nazvane su i limfoepitelnim lezijama (68).

Više od 90% navedenih limfoma etiopatogenetski su povezani s infekcijom *H. pylori*. Uglavnom su niskomaligni i različiti od limfoma u limfnim čvorovima. Istraživanja su potvrdila da infekcija prethodi nastanku limfoma. Pretpostavlja se da bakterija osigurava antigenski poticaj koji je, kako se čini, ključan za rast limfoma. Aktivacija limfatičnog tkiva u želuču može se tako dovesti u vezu s neuobičajenim odgovorom na upalu uzrokovanu *H. pylori*, a neadekvatan imunološki odgovor u nekih je bolesnika samo korak do klonalne proliferacije. Posređnici su ovog odgovora intramuralni limfociti T. Pokazalo se da neoplastični limfociti B niskomalignih MALT-limfoma specifično odgovaraju na antigene *H. pylori*. Opisani su slučajevi iznenađujuće dobre regresije limfoma na eradikaciju infekcije *H. pylori*. Isto tako, novija istraživanja su potvrdila da osobe inficirane *Helicobacter suis* (*H. suis*) imaju veću incidenciju MALT limfoma u odnosu na one inficirane s *H. pylori* ukazujući na ozbiljan rizik za zdravlje za osobe izložene domaćim životinjama (svinje, mačke, psi) (69).
1.4. Povezanost Helicobacter pylori s ekstragastrointestinalnim bolestima

Helicobacter pylori povezuje s mnogim bolestima koje ne pripadaju gastrintestinalnom traktu. O ulozy u njihovoj patogenosti još se ne zna dovoljno. Svake godine se publicira nekoliko studija na tu temu. Najčešće istraživana uloga H. pylori na ekstragastrointestinalne bolesti je kod koronarne bolesti. Tako neki autori nalaze povezanost smanjenja srčanih udara kao posljedicu eradikacije H. pylori i izlječenja duodenalnog ulkaza (70). Nakagawa i sur. povezali su visoku serumsku razinu IL-6 s H. pylori infekcijom i srčanim udarom (71). Slično, navode i drugi autori (72-73), dok neki autori ne nalaze povezanost koronarne bolesti i H. pylori infekcije (74). Važna uloga posvećena je proučavanju povezanosti H. pylori i šećerne bolesti, kao i komplikacija šećerne bolesti. Tako neke studije nalaze povezanost (75-76), dok neke ne nalaze (77-78). Od neuroloških bolesti, neke studije navode vezu između H. pylori i moždanog udara (79,80). Neki autori opisuju utjecaj H. pylori na demenciju (81,82). Spominje se i manja prevalencija multiple skleroze kod H. pylori pozitivnih osoba, više sugerirajući protektivnu ulogu H. pylori, nego negativnu (83). Sideropenična anemija i H. pylori našle su svoju potvrdu povezanosti u nekim studijama (84,85), za razliku od tri nedavne studije koje nisu potvrdile tu vezu (86-88). Druge bolesti koje se povezuju s H. pylori infekcijom su autoimuna trombocitopenična purpura, autoimune bolesti (tiroiditis, reumatoidni artritis), hepatobilijarne bolesti, bolesti kolona i pankreasa, respiratorne bolesti, kožne bolesti (urtikaria, rosacea) (89).
1.5. Mikrobiološke značajke *Helicobacter pylori*

1.5.1. Morfologija

H. pylori je spiralna, mikroaerofilna, gram negativna bakterija zavijenih krajeva. Kultivacijom na krutim podlogama oblici su češće štapićasti, širine 0.3 do 0.60 µm, dužine 1.5 do 10.0 µm. Savinuti oblici povremeno poprimaju spirali oblik. Nakon produžene kultivacije na krutim podlogama ili uzgojem u tekućim podlogama tipično dolazi do predominacije kokoidnih formi. Kokoidne forme promatrane elektronskim mikroskopom imaju izgled bacila oblika slova U u kojima su krajevi spojeni membranoznom strukturom (90). Saito i sur. su u svojim studijama dokazali da kokoidne forme također mogu penetrirati u humanu gastričnu epitelnu stanicu i uzrokovati aktivnu infekciju iste. Navode postojanje pet kategorija kokoidnih oblika *H. pylori*; sposobnih prodrijeti direktno u epitelnu stanicu, umirućih, živih i uzgojivih, živih, ali ne-uzgojivih i aktivnih za očuvanje vrste (91). *H. pylori* je vrlo pokretan zahvaljujući postojanju više flagela (4-6) smještenih na jednom ili oba pola bakterijske stanice. Flagele imaju zadebljanje na kraju koje je produžetak ovojnice. Vanjska membrana *H. pylori* je prekrivena strukturom nalik na glikokaliks.

Bakterija je mikroaerofilna, optimalni rast postiže se pri 37º C uz 100% vlaznost u mikroaerofilnoj atmosferi (10% CO₂, 5% O₂, 85% N₂). Raste vrlo sporo i za rast treba vrlo hranjivu podlogu. Može preživjeti na pH okoliša 3,0-7,0, na višem pH ugiba vrlo brzo. Vrlo je osjetljiva na isušivanje i na sva uobičajena dezinfekcijska sredstva (90).

1.5.2. Čimbenici virulencije

Iako svi inficirani imaju upalnu reakciju sluznice želuca (gastritis), samo 20% razvije ulkusnu bolest, a 1-3% želučani karcinom. Opseg i težina inflamacije sluznice i klinički ishod infekcije ovise o mnoštvu čimbenika. Među njima najznačajniji su genetska predispozicija i imunološki odgovor domaćina,
čimbenici okoline (pušenje, prehrana) i različitost u prevalenciji i ekspresiji čimbenika virulencije Helicobacter pylori (92).

Čimbenike virulencije H. pylori možemo podijeliti u tri skupine:

- čimbenike kolonizacije
- perzistencije
- čimbenike indukcije bolesti (gene virulencije) (93)

1.5.2.1. Čimbenici kolonizacije

Spiralni oblik H. pylori je važan čimbenik njenje pokretljivosti i bitan preduvjet za uspješnu kolonizaciju. Danas su poznati geni (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5, csd6) koji induciraju modifikacije u unakrsnom vezanju peptidoglikana u staničnom zidu H. pylori određujući njen spiralni oblik (94).

1.5.2.2. Čimbenici perzistencije

1.5.2.3. Čimbenici indukcije bolesti (geni virulencije)

Gene virulencije *H. pylori* klasificiramo u tri skupine:

1. Soj specifični geni koji su prisutni samo u *H. pylori* sojeva. Unutar te skupine najproučavaniji su geni unutar *cag* otoka patogenosti (PAI), *cag*PAI. Ostali soj specifični geni smješteni su izvan *cag*PAI otoka, tako je približno polovica tih gena smještena u plastičnoj regiji (*engl. plasticity region*).

2. Fazno-promjenljivi geni čiji se status mijenja rastom ovisno o različitim uvjetima. Tu pripada šest gena koji kodiraju proteine vanjske membrane (*oipA, sabA, sabB, babB, babC i hopZ*).

Otok patogenosti (*engl. cytotoxin-associated gene pathogenicity island - cagPAI*) zauzima 40 kb fragmenta kromosoma *H. pylori*. Sadrži 30 gena podijeljenih u regiju I i II. *Cag*PAI se definira kao intaktni ako su svi geni prisutni, negativni *cag*PAI ako nema niti jednog gena, a parcijalno izbrisani *cag*PAI se definira kao prisustvo nekoliko gena. *Cag*PAI pozitivet se definira s prisutnošću intaktnog i parcijalno izbrisanog *cag*PAI (100-102). Mnoge studije opisuju vezu između prisutnosti intaktnog *cag*PAI, parcijalno izbrisanog i negativnog *cag*PAI i kliničkog ishoda. Neki autori tako povezuju intaktni *cag*PAI s teškim gastroduodenalnim bolestima, dok se parcijalno izbrisani *cag*PAI povezuje s blažim gastroduodenalnim bolestima (103). U isto vrijeme drugi autori ne nalaze povezanost između prisutnosti *cag*PAI i gastroduodenalne bolesti (104-106). Zadnja studija Hanade i sur. ustanovila je da su bolesnici inficirani sa *cag*PAI pozitivnim sojevima imali dva puta veći rizik od karcinogeneze od onih inficiranih s *cag*PAI negativnim sojevima. Naime, u bolesnika s *cag*PAI zabilježana je veća akumulacija dvostrukih lomova DNA (DSBs) za razliku od *cag*PAI negativnih (107). Takav rezultat sugerira da *cagA* učestvuje u inaktivaciji RAD51 i reducira aktivnost DBS.
reparatornog sistema kroz homolognu rekombinaciju stanice domaćina nakon infekcije s cagPAI pozitivnim sojem. cagPAI je odgovoran za ranu indukciju inflamatornih medijatora tokom infekcije, kao što su kemokini CXCLI-3, CXCL5, CXCL8, CLL20, beta-defensin 2 (BD2) i tumor nekrozis faktor-alfa (TNF-α) (108).

Uloga cagPAI u patogenezi je višestruka, inducira produkciju IL-8 (110-113). IL-8 je jaki induktor aktivnosti i kemotaksijske za neutrofile. U akutnoj infekciji povezan je s migracijom i aktivacijom polimorfonukleara, a u kroničnoj infekciji kroz aktivaciju NFkB i kemokinske kaskade dovodi do oštećenja stanica. Također se pokazalo da prisustvo cagA i posljedična kemokinska reakcija dovodi do modulacije lučenja gastrina. Gastrin stimulira lučenje želučane kiseline u korpusu i to je kritični faktor u razvoju i progresiji karcinoma želuca. CagA pozitivni sojevi povezani su i sa smanjenom produkcijom mucina. Ovim mehanizmima cagA pozitivni sojevi povezani su s težim oblicima gastritisa i većom gustoćom bakterija u in vivo uvjetima.

CagA gen (engl. cytotoxin-associated gene A) se nalazi u regiji I otoka patogenosti i smatra se markerom te regije. Obzirom na prepoznate patogenetske mehanizme povezane uz cagA gen, njegova prisutnost pokušala se povezati s različitim patohistološkim promijenama sluznice želuca te s kliničkim dijagnozama. Sam cagA protein je in vivo povezan s jačim izraženim upalom i stimulacijom sekrecije IL-8 i drugih proupalnih citokina (IL-1 α β), te pojačanom neutrofilnom infiltracijom sluznice želuca (99).

U gastritisu povezanom s H. pylori infekcijom, patohistološki se često vide infiltrati neutrofilnih stanica u istmusu i vratu žlijezda. Otpuštanje reaktivnih metabolita kisika i proteaza dovodi do oštećenja i smrti epitelnih stanica. Sojevi koji posjeduju cagA povezuju se s višim stupnjem intestinalne metaplazije, neutrofilne aktivnosti, kronične inflamacije. Oštećenje stanica uzrokuje njihovo nestajanje i zamjenu drugim epitelnim stanicama (metaplazija) ili drugim tkivom (fibroza), a time i veću učestalost pojave atrofije (116). U zemljama Zapada u 40-50% H. pylori inficiranih tokom života razvije intestinalnu metaplaziju. U neinficiranih taj postotak je značajno niži (5-10%). Prisutnost intestinalne metaplazije povezuje se s povećanim rizikom nastanka želučanog karcinoma. Osim tipa intestinalne metaplazije čini se da značajnu ulogu ima i distribucija promjena na sluznici želuca. Kao i kod atrofije ekstenzivnije promjene češće su povezane s razvojem karcinoma. Suprotno neke studije nisu našle povezanost cagA statusa i kliničkog ishoda (117-120).
H. pylori gastritis nedvojbeno je rizični čimbenik za nastanak atrofičnog gastritisa, intestinalne metaplazije, displazije i želučanog karzinoma. Osim infekcije značajnu ulogu u patogenezi karzinoma želuca imaju čimbenici domaćina. Čimbenici virulencije bakterije povezuju se s pojačavanjem upalnog odgovora i neposrednim djelovanjem na gene uključene u karcinogenezu. Od strane domaćina različiti polimorfizmi gena za proinflamatorne cytokine povezani su s povećanim rizikom razvoja premalignih promjena i karzinoma želuca. Kombinacijom navedenih polimorfizama proinflamatornih gena i virulentnih čimbenika bakterije rizik nastanka karzinoma višestruko se povećava.

Na cagPAI regiji smješteni su i drugi geni virulencije kao što su *cagE, cagG, cagH, cagM, cagL, LEC* (lijevi kraj cagII regije), *tnpA, tnpB* koji sudjeluju u cagPAI posredovanoj NF-κB indukciji i translokaciji cagA pomoću T4SS.

CagT gen (engl. cytotoxin- associated gene T) je marker cagII regije, neke studije ga također povezuju s teškim kliničkim slikama, potvrđena je njegova uloga u formiranju T4SS sistema i stvaranju pila između epitelnih želučanih stanica i *H. pylori* (125).

Prva studija koja je proučavala *tnpA* i *tnpB* ustanovila je značajnu povezanost između želučanog ulkusa i *H. pylori* *tnpA* pozitivnih sojeva (128). Neke druge studije također su potvrđile povezanost između *tnpA* i želučanog carcinoma u populaciji Perua, Brazila i Irana (128,129).

LEC (*engl.* left end of the *cag*) značajno se povezuje s želučanim ulkusom (128), slično je potvrdila i studija autora iz Brazila (130). Dokazana je i povezanost s karcinomom želuca (131).

Dok prisutnost *cagA* može signalizirati pojačanu predispoziciju za razvoj težih kliničkih oblika bolesti, mnoštvo čimbenika, poglavito zemljopisne varijacije u genotipovima mogu ograničiti vrijednost *cagA* i ostalih markera virulencije kao indikatora patogenosti sojeva. Postoji određeno klonalno grupiranje u pojedinim dijelovima svijeta otprije poznato kao razlika u distribuciji gena pozitivnih sojeva u Aziji, s jedne strane i sjevernoj Americi/Europi, s druge strane. Ova pojava najvjerojatnije odgovara adaptaciji bakterija pojedinoj etničkoj grupi populacije (132).

DupA gen (*engl.* duodenal ulcer promoting gene A) obuhvaća dvije komponente *jhp0917* i *jhp0918*. Patogeneza *dupA* gena nije u potpunosti razjašnjena. Pretpostavlja se da neki sojevi formiraju tip IV sekrecijski sistem, sličan sistemu *cag*PAI, koji uključuje *dupA* gen. Ima ulogu u indukciji interleukina-8 (IL-8). Lučenje IL-8 u antrumu dovodi do pojačane neutrofilne infiltracije i slike antrum dominantnog gastritisa, dobro prepoznatog karakteristici duodenalnog ulkusa.

Originalno, Lu i ostali opisali su u Japanskoj populaciji značajno veću učestalost *dupA* gena kod bolesnika sa doudoenalnim ulkusom u odnosu na
one sa gastritisom, želučanim karcinomom i zaključili da je *dupA* povezan s povećanim rizikom za nastanak duodenalnogulkusa, a ima zaštitnu ulogu u nastanku želućanog karcinoma i protektivnu ulogu u nastanku atrofije i intestinalne metaplasije (133).

Takve diskrepance mogle bi biti rezultat zamljopisne i etničke varijacije u prevalenciji *dupA* gena unutar iste zemlje i među različitim zemljama.

1.5.3. Povezanost *cagPAI* i *dupA* gena

Rezultati studija koji opisuju povezanost *cagPAI* i *dupA* također su dvojbeni. Studija koja je uključivala bolesnike iz Indije s gastritisom i duodenalnim ulkusom izvjestila je o povezanosti *dupA* s *cagA* pozitivnim genotipovima (134). Dvije studije su našle povezanost *dupA* s *cagA* pozitivnim genotipovima izoliranih u odraslih s duodenalnim ulkusom, ali ne i bolesnika s drugim bolestima i u izolatima djece (122,136).
1.6. Eradikacija infekcije *Helicobacter pylori*

Poznato je da eradikacijska terapija *H. pylori* prevenira i nastanak MALT limfoma, sideropenične anemije, idiopatske trombocitopenične purpure, limfocitnog gastritisa i Menetrierove bolesti. Konačno, eradikacija koja pomaže u cijeljenju gastritisima, dovodi do smanjenja mortaliteta zbog samog gastritisa te prevenira i reducira buduće troškove liječenja komplikacija i drugih bolesti povezanih s *H. pylori* (143,144). Rizik od razvoja želučanog karcinoma znatnije je smanjen ako se eradikacija infekcije *H. pylori* provede prije razvoja premalignih promjena (atrofije, intestinalne metaplazije i displazije).

Prema preporukama Europskog društva za proučavanje Helicobacteria (The European Helicobacter Study Group- EHSG) donešen je hrvatski postupnik za dijagnostiku, liječenje i praćenje bolesnika s infekcijom *H. pylori*. Tako je preporuka za eradikacije *H. pylori* u:

- najbližih rođaka bolesnika kod kojeg je dijagnosticiran želučani karcinom,
- bolesnika s već dijagnosticiranim želučanim tumorom u kojih je provedeno endoskopsko ili kirurško liječenje supotalnom resekcijom želuca, bolesnika s visokim rizikom od gastritisima: teškim pangastritisom, gastritisom, gastritisom koji prevladava u korpusu i teškom atrofijom, bolesnika na kroničnoj protusekretornoj terapiji IPP-om koja traje više od godinu dana, bolesnika s ostalim značajnim rizičnim čimbenicima za želučani karcinom: jaki pušači,
rad u okruženju prašine od: ugljena, kremena, cementa, rad u kamenolomu, bolesnika pozitivnih na H. pylori sa strahom od želučanog karcinoma (145).

Standardni trojni režim eradikacijske terapije temeljen na inhibitoru protonske pumpe (IPP) i dva antimikrobna lijeka postao je preporuka svih svjetskih postupnika. Između triju najčešće propisivanih antibiotika Europska grupa daje prednost makrolidu klaritromicinu, uz koji preporučuje kao drugi antibiotik amoksicilin ili metronidazole/tinidazol. Hrvatska radna skupina za infekciju H. pylori preporučila je slične sheme liječenja, samo što je kao makrolid predložen azitromicin s obzirom da klaritromicin u to vrijeme još nije bio registriran u našoj zemlji (145). Novije studije pokazale su značajan pad djelotvornosti dosada uobičajene trojne terapije.

1.6.1. Uzroci neuspjeha eradikacije infekcije H. pylori

Na stopu izlječenja H. pylori infekcije utječe nekoliko različitih čimbenika: otpornost (rezistencija) H. pylori na antibiotike, genotipski čimbenici domaćina, kao što su citokrom P450 2C19 (CYP2C19), višestruko otporni transporter-1 (MDR 1), polimorfizam proupalnih citokina, pušenje, pridržavanje uputa o uzimanju lijekova-suradljivost (engl. compliance), dužina trajanja terapije (152,153).
1.6.1.1. Otpornost (rezistencija) *H. pylori* na antibiotike

Novije studije pokazuju značajan pad djelotvornosti dosada uobičajene trojne terapije. Uspjeh se postiže u najviše 70 % bolesnika (154-156), što je značajno niže od željenih 80-90% (157). Infekcija s rezistentnim *H. pylori* sojevima nesumljivo utječe na uspjeh ili neuspjeh eradikacijske terapije (153,158). Više od polovice bolesnika s neuspjelom eradikacijom bilo je inficirano klaritromicin rezistentnim sojevima (159).

U priobalnom području primarna je rezistencija također porasla na 22 % u 2011. godini (160). Iako je primarna *in vitro* rezistencija na metronidazol u brojnim europskim zemljama relativno visoka, taj se problem može prevladati povišenjem doze i dužom terapijom ili dodatkom preparata bizmuta.

1.6.1.2. Lučenje želučane kiseline

Nedovoljna inhibicija lučenja želučane kiseline može uzrokovati neuspjeh u liječenju. Želučana kiselina čini antibiotike nestabilnim, pogotovo klaritromicin i amoksicilin, razgrađuje ih u želucu i umanjuje antimikrobni efekt (163,164). Stoga je nužna primjena inhibitora protonske pumpe (IPP) tjekom eradikacijske terapije. Rast pH s 3.5 na 5.5 povećava *in vitro* aktivnost amoksicilina više od 10 puta (163). Tako je 24-satni pH u želucu izlječenih bolesnika bio znato viši od pH ne izlječenih bolesnika. Potvrđena je uspješna eradikacija bez obzira na bakterijsku osjetljivost na klaritromicin u bolesnika kod kojih je 10% vremena pH u želucu bio < 4,0, uz prosječni 24-satni pH < 6,0 (152).

Farmakoterapijska istraživanja su potvrdila mnoge čimbenike koji djeluju na lučenje želučane kiseline za vrijeme eradikacijske terapije: vrsta i doza IPP-a, genotipski čimbenici domaćina: kao što su polimorfizam citokromA P450
2C19 (CYP2C19), višestruko otporni transporter-1 (MDR1), polimorfizam upalnih citokina. Tako stopa izlječenja standardnom trojnom terapijom značajno ovisi o CYP2C19 genotipu: 72.7% kod brzih metabolizatora, 92.1% u intermedijarnih i 97.8% u sporih metabolizatora. Kod brzih metabolizatora inficiranih s klaritromicin rezistentnim sojem stopa izlječenja H. pylori je dramatično niska (7.1%) (159).

Od upalnih citokina koji se luče interleukin (IL)-1β i tumor nekrozis faktor (TNF) inhibiraju lučenje želučane kiseline (165).

1.6.1.3. Priručavanje uputa o uzimanju lijekova - suradljivost

Stopa neuspjeha izlječenja povezana je sa slabijom suradljivošću bolesnika (preskakanje doza, skraćivanje vremenskog perioda terapije, pušenje) (153). Meta analize su pokazale da je 14-dnevni tretman imao veću stopu izlječenja od 7-dnevnog (166).

1.6.1.4. Čimbenici virulencije H. pylori

CagA status i eradikacijska terapija

Van der Hulst i sur. su prvi istražili povezanost cagA i stope izlječenja. Izvjestili su o značajno većoj stopi izlječenja kod bolesnika inficiranih s cagA pozitivnim sojevima (73%) u odnosu na cagA negativne sojeve (52%) (167). Neke studije su uspjele potvrditi orginalnu hipotezu (168-170), a neke nisu našle povezanost između cagA i stope izlječenja (171,172).

Objašnjenje povezanosti uspjeha ili neuspjeha terapije s cagA statusom nalazi se u pojačanoj inflamaciji služnice želuca čemu pridonosi cagA pozitivitet. Polimorfonuklearna infiltracija u antrumu bolesnika s višim stupnjem inflamacije (skor 2-3) povezuje se s značajno većom stopom izlječenja za razliku od onih s nižim stupnjem inflamacije (skor 0-1). Upala povećava hiperemiju u služnici, a time i bolju difuziju antibiotika (173).

Kao drugi mehanizam, navodi se da cagA pozitivni sojevi rastu brže od cagA negativnih sojeva, a pošto su antibiotici aktivniji tokom stanične diobe, djelotvorniji su na brzo rastuće bakterije za razliku od sporije rastućih (174).
Kao treći mehnizam navodi se utjecaj interleukina (IL)-1β čija povećana produkcija u odgovoru na *H. pylori* infekciju inhibira lučenje želučane kiseline. Potvrđeno je da cagA pozitivni sojevi proizvode znatno više IL-1β u želučanoj sluznici u usporedbi s cagA negativnim sojevima. Na taj način cagA negativni sojevi postaju manje dostupni antibioticima i njihva eradikacija je niža.

VacA status i eradikacijska terapija

Nekoliko studija je izvjestilo o povezanosti između vacA i izlječenja. Neke su našle povećani rizik od neuspjeha eradikacije *H. pylori* i vacA s2 genotipa u odnosu na s1 genotip (169,170). Jedna studija opisala je značajno povećan rizik od neuspjeha eradikacije povezan s vacA m1 genotipom u usporedbi s m2 genotipom (175). Neke studije nisu našle povezanost vacA i ishoda liječenja (154).

DupA staus i eradikacijska terapija

Shiota i sur. prvi su pokušali u svojoj studiji naći povezanost dupA stausa i neuspjeha eradikacijske terapije. DupA prevalencija je bila veća u neeradiciranoj grupi u odnosu na eradiciranu grupu. U multivarijatnoj analizi prilagođenoj za dob, spol, vrstu bolesti dupA je bio neovisan (u odnosu na klaritomicinsku rezistenciju) rizični faktor za neuspjeh liječenja. Histološki skor se nije razlikovao između dupA pozitivne i dupA negativne grupe, sugerirajući da mehanizam niže stope izlječenja u dupA pozitivnoj grupi nije bio uzrokovano histološkim razlikama kakve viđamo u cagA pozitivnih i cagA negativnih bolesnika. Lučenje želučane kiseline je značajno veće u dupA pozitivnih bolesnika u odnosu na dupA negativne (176), to korelira sa povećanom razinom serumskog gastrina u dupA pozitivnih bolesnika u odnosu na dupA negativne bolesnike sugerirajući da je lučenje želučane kiseline veće u dupA pozitivnih (176). Lu i sur. su izvjestili o povezanosti dupA i povećanoj otpornosti na niski pH in vitro studiji. DupA pozitivni sojevi mogu inducirati povećanu količinu gastrina i pojačano lučenje
želučane kiseline, a pojačano lučenje želučane kiseline može biti povezano s manjom stopom izliječenja (133).
Mogući su i drugi mehanizmi odgovorni za neuspijeh izliječenja, buduće studije će odgovoriti na ova pitanja.

Gustoća H. pylori u želučanoj sluznici

Cilj naše studije bio je da se na temelju učestalosti gena virulencije cagPAI otoka *H. pylori* izolata i usporedbe s patohistološkim promijenama želučane sluznice pokuša izdvojiti skupina bolesnika kod koje se mora i dalje inzistirati na eradikaciji *H. pylori* infekcije.

Ovom studijom obuhvatili smo bolesnike u kojih nismo uspjeli eradicirati *H. pylori* infekciju nakon višestrukih pokušaja liječenja, unatoč toga što je terapija, nakon jedan ili dva neuspjela pokušaja, bila kreirana prema testu antimikrobne osjetljivosti. Najveći broj bolesnika imao je uredan ili tek bezazleni endoskopski nalaz (erozije gastroduodemuma). S obzirom na sve veći broj bolesnika koji i dalje imaju smetnje i benigan endoskopski nalaz, nameće se pitanje: da li i dalje kod takvih bolesnika inzistirati na eradikaciji *H. pylori*.

Na temelju dosadašnjih istraživanja temeljenih na biološkoj vjerodostojnosti i eksperimentalnoj epidemiološkoj pouzdanosti može se pretpostaviti da će prisutnost gena virulencije cag otoka patogenosti biti povezana s višim stupnjem kronične inflamacije sluznice želuca, neutrofilne aktivnosti, kao i s prekanzeroznim lezijama (intestinalna metaplazija, atrofija), što u konačnici može dovesti do teških gastroduodenalnih bolesti. Uz osjetljivost domaćina, djelovanje čimbenika iz okoliša, *H. pylori* cagPAI gene virulencije i mnogi drugi čimbenici virulencije *H. pylori* vjerojatno su odgovorni da neki inficirani bolesnici ostanu bez simptoma (imaju samo gastritis utvrđen histološkim analizom), a neki razviju ozbiljnije gastroduodenalne bolesti, ili u najtežim slučajevima – malignu bolest. Dio odgovora pružiti će nam detekcija gena virulencije cagPAI otoka ove skupine bolesnika u našem zemljopisnom području.

Prema originalnim istraživanjima dupA gen je zastupljeniji u bolesnika s antrum predominantnim gastritisom koji uobičajeno prati duodenalni ulkus, za razliku od bolesnika s difuznim ili korpus predominantnim gastritisom, koji prati želučani ulkus, pa i karcinom. Brojna druga istraživanja su pokazala vrlo kontradiktorne rezultate, potrđujući postojanje različitih zemljopisnih varijacija u distribuciji dupA i povezanosti s gastroduodenalnim bolestima. S obzirom da u našoj sredini nema nikakvih saznanja o učestalosti i povezanosti dupA
gena s gastroduodenalnim bolestima i s obzirom na raznolikost rezultata drugih studija teško je za pretpostaviti rezultate našeg istraživanja.

Praktična vrijednost ovog rada je u stvaranju epidemiološke slike o distribuciji detektiranih cagPAI i dupA gena sjeverozapadne Hrvatske. Ti podaci mogu biti osnova za epidemiološku bazu podataka i usporedbu s drugim zemljopisnim regijama.

Istraživanjem je, naime, dokazano da postoji određeno klonalno grupiranje u pojedinim dijelovima svijeta otprije poznato kao razlika u distribuciji gena pozitivnih sojeva. Ova pojava najvjerojatnije odgovara adaptaciji bakterije pojedinoj etničkoj grupi populacije.

Danas je priznato mjesto molekularne dijagnostike u detekciji gena rezistencije na određene antibiotike direktno iz kliničkih uzoraka. Iako se smatra da je uporaba molekularne dijagnostike za detekciju gena virulencije u rutinskoj dijagnostici preskupa i nije preporučena za širu uporabu, ona bi trebala naći svoje mjesto u selektivno odabranim bolesnicima u kojih se nije uspjelo eradirati infekciju uobičajenim terapijskim protokolima, pa makar se radilo i o *H. pylori* pozitivnoj ne-ulkusnoj dispepsiji sa blagom kliničkom slikom i urednim endoskopskim nalazom. Posebno se to odnosi na one, ma kako bili rijetki, kod kojih histološki nalazi upućuju na opasnost od razvoja težih ili premalignih promjena želučane sluznice.

Nezanemariva je vrijednost rada je i u određivanju antimikrobne rezistencije *H. pylori* izolata. Radi se o sekundarnoj rezistenciji, koja po literaturi doseže visoke vrijednosti u mnogim sredinama. Saznanje o rezistenciji naše skupine bolesnika može pomoći u odabiru novih terapijskih shema pri ponovnim pokušajima erdikacije *H. pylori* infekcije, te korekciji postojećih nacionalnih smjernica liječenja.
2. HIPOTEZE

1. Prisutnost gena virulencije cagPAI otoka povezana je s višim stupnjem kroničnog aktivnog gastritisa i prekanzeroznim lezijama

2. Prisutnost dupA gena veća je u bolesnika s antrum predominantnim gastritisom za razliku od bolesnika s difuznim ili korpus predominantnim gastritisom
3. CILJEVI

3.1. Osnovni cilj:
Detekcija gena virulencije cag otoka patogenosti i dupA gena Helicobacter pylori izolata bolesnika nakon višestruke neuspjele eradikacijske terapije i usporedba s patohistološkim promjenama želučane sluznice.

3.2. Specifični ciljevi:
1. Uspoređiti prisutnost intaktnog cagPAI, izbrisanog (deliranog) i parcijalno izbrisanog cagPAI otoka s patohistološkim promjenama želučane sluznice
2. Uspoređiti prisutnost dupA i cagPAI statusa
3. Odrediti antimikrobnu osjetljivost Helicobacter pylori izolata određivanjem minimalnih inhibitornih koncentracij (MIK) Epsilon-testom (E-test)
4. Uspoređiti prisutnost gena virulencije cagPAI i dupA gena s antimikrobnom osjetljivošću
4. MATERIJALI I METODE

4.1. Ispitanici i mjesto istraživanja

Ispitivanje je odobreno od strane Etičkog povjerenstva Kliničke bolnice Merkur i Kliničkog bolničkog centra Zagreb.

U ispitivanje su uključena 103 bolesnika, 25 muškaraca i 78 žena. Za sve bolesnike je bilo karakteristično da su proveli eradikacijsku terapiju (jednom ili više puta), a i dalje su imali jasno dokazanu Helicobacter pylori infekciju (pozitivan nalaz bakterije u brzom ureaza testu, histološkoj analizi sluznice želuca, mikrobiološkom izolacijom i molekularnom detekcijom). Bolesnici su imali jasno izražene i subjektivne tegobe. Svi bolesnici su potpisali informirani pristanak prije istraživanja.
4.2. Uzori

4.3. Metode istraživanja

U istraživanju su korištene kliničke, patohistološke i mikrobiološke metode.

4.3.1. Kliničke i patohistološke metode

Ezofagogastroduodenoskopija

Ezofagogastroduodenoskopija (EFGD) napravljena je s Olympus ezofagogastroduodenoskopima, a bioptički uzorci sluznice želuca uzimani su biopsijskim kliještima. Pri svakoj EFGD uzimano je 7 ciljanih bioptičkih uzoraka sluznice želuca iz antruma i korpusa. Antralni uzorak je stavljen u 2% urea agar za brzu detekciju aktivnosti *Helicobacter pylori* ureaze. Sljedeća 2 uzorka sluznice antruma, te 2 uzorka sluznice korpusa stavljena su u 4% formalin za histološku analizu, a po jedan bioptički uzorak sluznice antruma i korpusa stavljeni su transportnu podlogu za izolaciju bakterije *H. pylori*, tioglikolatni bujon.

Endoskopska dijagnoza klasificirana je u nekoliko kategorija:

1..neulkusna dispepsiija (NUD)
2. želučani ulkus (UV)
3. duodenalni ulkus (UD)
4. želučane erozije (EV)
5. duodenalne erozije (ED)
6. maligni tumori (C)

Potvrda *Helicobacter pylori* infekcije napravljena je:

1. brzim ureaza testom
2. patohistološkom analizom želuca
3. mikrobiološkom izolacijom *H. pylori*
Brzi ureaza test

Kod svih 103 bolesnika učinjen je brzi ureaza test (Camphylobacter-like organism-CLO test, Delta West, Bentley, Western Australia). Uzorak tkiva želuca stavljen je u 2% urea polukruti agar. Očitavano je nakon 20 minuta (razvoj crvene/ljubičaste boje oko bioptičkog uzorka znak je pozitivnog testa), a kod negativnih nalaza još i nakon 3 i 24 sata radi moguće zakašnjenje pozitivne reakcije.

Histološka analiza sluznice želuca

U svih 103 bolesnika uzorci bioptata želuca fiksirani su u standardnom 4% neutralnom puferiranom formalinu, uklapani u parafin, serijski izrezani u rezove debljine 3 mikrona. Rezovi su rutinski obojeni.

1. hemalaun-eozinom za standardnu histološku analizu
2. PAS (engl. periodic acid Schiff-alcijan) plavilom za dokaz intestinalne metaplazije
3. modificiranim 2% Giemsa ili Warthin-Starry bojenjem za određivanje stupnja mukozne kolonizacije s H. pylori

Svaki uzorak mikroskopski je analiziran prema modificiranoj Sydney-skoj klasifikaciji gastritisa. To je uključivalo: prisutnost upalnih stanica (inflamacija), aktivnost upale (prisutnost neutrofila), prisutnost i gustoću H. pylori, te prisutnost atrofije i intestinalne metaplazije (45). Zastupljenost svakog od prva četiri parametra stupnjevana je prema kriterijima modificirane Sydney-ske klasifikacije gastritisa (0= nema, 1= rijetko, 2= osrednje, 3= obilno), a intestinalne metaplazije su skorirane s ima/nema, s obzirom da ni jedan bolesnik nije imao inkompletnu metaplaziju II ili III stupnja. Sve prisutne metaplazije bile su I stupnja.
4.3.2. Mikrobiološke metode

4.3.2.1. Konvencionalne mikrobiološke metode

Izolacija *Helicobacter pylori* iz želučanih bioptata

Uzorci bioptata želuca (1 iz korpusa i 1 iz antruma) pohranjeni su u tioglikolatni bujon i čuvani na 4°C do nasađivanja (maksimalno 24 sata od uzimanja).

Uzorci želučanih biopsija mehanički su oslobodeni sluzi struganjem sa sterilnim iglama. Nakon toga su usitnjeni i naneseni na površinu hranjive podloge. Manji dio usitnjenog uzorka (otprilike 1/5) je podijeljen u dva dijela od kojih je jedan dio inokuliran u epruvete s reagensom za test ureaze (BioMerieux), a drugi iskorišten za izradu mikroskopskog preparata bojenog po Gramu. Uzorci su nasađeni na Columbia agar s dodatkom 7%-ne konjske krvi i selektivnim suplementom za uzgoj *H. pylori* (OxoidSR127).

Ploče su inkubirane uz 100% vlažnost pri 37°C 3-5 dana u mikroaerofilnoj atmosferi u anaerobnim loncima (10% CO₂, 5% O₂, 85% N₂). Mikroaerofilna atmosfera postignuta je korištenjem Gas Pak vrećica za anaerobne bakterije bez katalizatora (BioMerieux) i dodavanjem vode u svrhu ovlaživanja. Od trećeg dana inkubacije ploče su svakodnevno provjeravane za pojavu rasta bakterija.

Izolat je identificiran na temelju karakteristične makromorfologije, mikroskopskog preparata i biokemijskih testova. Makroskopski su *H. pylori* male, prozirne, konvekse kolonije nalik na kapi rose, do 3 mm promjera. Mikroskopski su zavijeni gram-negativni štapići koji u starijim kulturama poprimaju kokoidni oblik.

Biokemijski su izolati identificirani testom katalaze, ureaze i oksidaze. Za test katalaze se na predmetno stakalce nanese 2-3 porasle kolonije *H. pylori* staklenim štapićem i kapne kap 3%-tnog H₂O₂. Pojava mjehurića je znak aktivnosti katalaze. Za test ureaze su 2-3 kolonije stavljenе u epruvetu s 0,5 mL urea-indol testa (Bio-Merieux). Pojava ljubičaste boje je dokaz aktivnosti ureaze. Za test oksidaze se 2-3 izolirane kolonije staklenim štapićem nanese...
na disk impregniran reagensom (BioMerieux), a pojava plave boje dokaz je oksidaza pozitivnog testa.

Svi potvrđeni izolati *H. pylori* pohranjeni su u brucela bujonu s 10%-tnim glicerolom u tekućem dušiku na -80°C.
Testiranje osjetljivosti na antimikrobna sredstva

Testiranje osjetljivosti na antibiotike napravljeno je metodom određivanja minimalne inhibitorne koncentracije (MIK) Epsilometer testom (E-test) (kombinacija difuzijske metode i određivanja MIK-a) (BioMerieux- France).

Za testiranje antimikrobne osjetljivosti napravljena je bakterijska suspenzija 3 McFarland i nanesena na Columbia agar s dodatkom 5-10% defibrinizirane konjske krvi. Nakon apsorpcije suspenzije u agar nanesu se E-test trakice na površinu. Inkubacija je 3 i više dana u termostatu u mikroaerofilnim uvjetima. Koncentracija antibiotika koja inhibira rast bakterije očitava se direktno sa skale na traci na mjestu gdje rast mikroorganizma u obliku elipse siječe test traku.

Tablica 1 prikazuje vrijednosti minimalnih inhibitornih koncentracija (MIK) koje su korištene kao interpretacijski standard za ispitivanje osjetljivosti H. pylori prema European Committe on Antimicrobial susceptibility testing (EUCAST) standardima (177).

<table>
<thead>
<tr>
<th>Antibiotik</th>
<th>Osjetljivo MIK (mg/L)</th>
<th>Rezistentno MIK (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoksicilin</td>
<td>≤ 0.12</td>
<td>>0.12</td>
</tr>
<tr>
<td>Azitromicin</td>
<td>≤ 0.25</td>
<td>>0.5</td>
</tr>
<tr>
<td>Klaritromicin</td>
<td>≤ 0.25</td>
<td>>0.5</td>
</tr>
<tr>
<td>Metronidazol</td>
<td>≤ 8</td>
<td>>8</td>
</tr>
<tr>
<td>Levofloksacin</td>
<td>≤ 1</td>
<td>>1</td>
</tr>
</tbody>
</table>

MIK- minimalna inhibitorna koncentracija
4.3.2.2. Molekularne mikrobiološke metode

Izolacija deoksiribonukleinske kiseline *Helicobacter pylori*

Izolacija DNA (engl. Deoxyribonucleic Acid; DNA) napravljena je pomoću komercijalnog kita High Pure PCR Template Preparation Kit, Version 16 (Roche Diagnostics, Mannheim, Germany) prema uputi proizvođača prema standardnom protokolu.

Prije postupka izolacije uvijek se uključio termo-block (Thermomixer comfort) na 70°C i otopila Proteinaza K.

Proteinaza K (liofilizat) otopila se u 4.5 ml sterilne destilirane H₂O, podijelila u alikvote i pohranila na -20°C (stabilno na -15°C do -20°C 12 mjeseci).

U epruvete od 1.5 ml za mikrocentrifugiranje resuspendiralo se 10-15 kolonija (oko 10⁹ CFU/ml) *H. pylori* s 200 µl pufera za liziranje tkiva (Tissue Lysis Buffer). Sadržaj je vorteksiran u centrifugi. Nakon toga dodano je 200µl pufera za vezivanje (Binding Buffer) i 40µl Proteinaze K. Sadržaj je vorteksiran. Nakon toga epruvete su inkubirane 10 minuta na 70°C u termo bloku. Nakon inkubacije epruvete su stavljene u centrifugu 5 s da se s čepova spusti kondenzat (engl. spindown). Dodano je 100 µl izopropanola i ponovo vorteksirano. Zatim je cijeli sadržaj (oko 600µl) prebačen u čiste filter epruvete. Nakon centrifugiranja 1 minuta na 8000 x g, supernatant je prebačen (sadrži DNA) u novu 1.5 ml epruvetu. Dodano je 500 µl pufera za odstranjivanje inhibitora (Inhibitor Removal Buffer) i ponovno se centrifugiralo 1 min. na 8000 g. Supernatant se ponovo prebacio u novu epruvetu, te se dodalo 500 µl pufera za ispiranje (Wash Buffer), centrifugiralo 1 min. na 8000 x g. Odbacio se sadržaj, a supernatant prebacio u novu epruvetu i centrifugirao 10 sekundi na 13000 x g. Supernatant se prebacio u nove epruvete s čepom od 1.5 ml, dodalo se 200 µl prethodno zagrijanog pufera za eluciju (Elution Buffer) na 70°C. Još jednom se centrifugiralo 1 min. na 8000 x g.

Konačan rezultat je isprana DNA u epruvetama koje su pohranjene na -20°C do slijedećeg procesa.
Umnažanje DNA metodom lančane reakcije polimeraze (engl. Polymerase Chain Reaction; PCR)

Za tipizaciju 13 gena korišteno je 26 parova početnica. Tablica 2 prikazuje početnice, njihove sekvence i veličinu PCR produkta. Set početnica (P1 i P2) koji amplificiraju Ag gen, prisutan u svih H. pylori korišten je kao pozitivna kontrola izolata. Početnice (SIGMA) su isporučene liofilizirane. U sterilnom kabinetu liofilizirane početnice su otopljene s PCR vodom (Sigma), mililitri vode navedeni u originalnoj uputi proizvođača za svaku početnicu. Od dobivene količine odvojeno je 50µl i razrijeđeno sa dodatnih 450 µl PCR vode. Osnovni štok i razrijeđena otopina početnica pohranjeni su na -20°C. U sterilnoj epruveti se za svaki od 13 navedenih parova početnica izmješalo 25.0 µl ukupnog reakcijskog volumena; 12.5 µl master mix-a (eng. master mix) 5.5 µl PCR vode, 2 µl svake početnice (¨3;¨5), 3µl izolirane DNA.
Tablica 2. Početnice korištene u istraživanju

<table>
<thead>
<tr>
<th>Gen</th>
<th>Početnica</th>
<th>Sekvenca početnice</th>
<th>Veličina PCR produkta</th>
</tr>
</thead>
<tbody>
<tr>
<td>cagM</td>
<td>Cag 5</td>
<td>ACAATACAAAAAGAGAGAGGC</td>
<td>586 bp</td>
</tr>
<tr>
<td></td>
<td>Cag 6</td>
<td>ATTTTCAACAGTTAGAAAAGCC</td>
<td></td>
</tr>
<tr>
<td>tnpA</td>
<td>Cag10</td>
<td>ATCATCCAAAATTCTTTCTTTCC</td>
<td>344 bp</td>
</tr>
<tr>
<td></td>
<td>Cag11</td>
<td>TAAGGGGCTATATTTCAAACCCG</td>
<td></td>
</tr>
<tr>
<td>tnpB</td>
<td>Cag 8</td>
<td>ACAATACAAAAAGAGAGAGGC</td>
<td>569 bp</td>
</tr>
<tr>
<td></td>
<td>Cag 9</td>
<td>AGCTAGGGAAAAATCTGTCTTGCC</td>
<td></td>
</tr>
<tr>
<td>cagE</td>
<td>CagE-F1</td>
<td>ACAATACAAAAAGAGAGAGGC</td>
<td>329 bp</td>
</tr>
<tr>
<td></td>
<td>CagE-R1</td>
<td>GAAGTGGTAAAAATCAATGCCC</td>
<td></td>
</tr>
<tr>
<td>cagT</td>
<td>CagT-F1</td>
<td>CATGTGTTATACGCCTGCTGT</td>
<td>301 bp</td>
</tr>
<tr>
<td></td>
<td>CagT-R1</td>
<td>CATCACACACCCCTTTTGTAT</td>
<td></td>
</tr>
<tr>
<td>cagA3</td>
<td>CagA-F1</td>
<td>AACAGGACAGTAGCTAGGCC</td>
<td>701 bp</td>
</tr>
<tr>
<td></td>
<td>CagA-R1</td>
<td>TATTAATGCGTGTTGCTGCTG</td>
<td></td>
</tr>
<tr>
<td>cagA2</td>
<td>CAG-1</td>
<td>AGACAACGTGAGGAGAGAG</td>
<td>320 bp</td>
</tr>
<tr>
<td></td>
<td>CAG-2</td>
<td>TATTGGGATTCTGAGAGAG</td>
<td></td>
</tr>
<tr>
<td>cagA1</td>
<td>CagA-F2</td>
<td>ACAATACAAAAAGAGAGAGGC</td>
<td>349 bp</td>
</tr>
<tr>
<td></td>
<td>CagA-R2</td>
<td>CTGCAAAAGAGTTGTGGCAGA</td>
<td></td>
</tr>
<tr>
<td>Apcag</td>
<td>CagA-R2</td>
<td>CTGCAAAAGAGTTGTGGCAGA</td>
<td>730 bp</td>
</tr>
<tr>
<td></td>
<td>AP-F1</td>
<td>GTGGGTAAAAATGTAATCCG</td>
<td></td>
</tr>
<tr>
<td>LEC</td>
<td>LEC-F1</td>
<td>ACATTTTTGCTAAATAAACGCTG</td>
<td>320-550 bp</td>
</tr>
<tr>
<td></td>
<td>LEC-R1</td>
<td>TCTCCATTTGCTGATTTGCTG</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>P1</td>
<td>TGGCCTGTTCTATTGACAGCG</td>
<td>298 bp</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>CGTGCTGGGCTATCTTCATCAG</td>
<td></td>
</tr>
<tr>
<td>jhp0917</td>
<td>JHP0917F</td>
<td>TGGTTTCTACTGACAGAGGC</td>
<td>307 bp</td>
</tr>
<tr>
<td></td>
<td>JHP0917R</td>
<td>AACAGGCTGACAGGAAATCTCCC</td>
<td></td>
</tr>
<tr>
<td>jhp0918</td>
<td>JHP0918F</td>
<td>CCTATACGCTAAAGCGCGGCTC</td>
<td>276 bp</td>
</tr>
<tr>
<td></td>
<td>JHP0918R</td>
<td>AAGCTGAAGCGTTGTAACCG</td>
<td></td>
</tr>
</tbody>
</table>

Umnažanje (amplifikacija) DNA provedeno je aparatu Thermal Cycler, GeneAmp® PCR Systems 97000, Applied Biosystems.
Termalni ciklusi bili su različiti za pojedine gene.

Za gen **cagA2** (178) reakcija amplifikacije se odvijala slijedom koji je naveden:

- razdvajanje dvostrukog DNA lanca (denaturacija) na temperaturi 94 °C, tijekom 5 min
- 27 ciklusa na 94°C 30 s
- vezanje početnica na komplementarnu sekvencu DNA (*engl. annealing*) na temperaturi 53°C, tijekom 30 s
- produljivanje početnice pomoću DNA polimeraze (ekstenzija) na temperaturi 72°C, tijekom 30 s
- finalna ekstenzija na temperaturi 72°C, tijekom 7 min

Za gene **cagM, tnpA, tnpB** (179):

- razdvajanje dvostrukog DNA lanca (denaturacija) na temperaturi 94°C, tijekom 1 min
- 35 ciklusa na 94°C 1 min
- vezanje početnica na komplementarnu sekvencu DNA (*engl. annealing*) na temperaturi 53°C, tijekom 3 min
- produljivanje početnice pomoću DNA polimeraze (ekstenzija) na temperaturi 72 °C, tijekom 1.5 min
- finalna ekstenzija na temperaturi 72 °C, tijekom 10 min

Za gene **cagA1, cagA3, cagT, cagE, Apcag** (102):

- razdvajanje dvostrukog DNA lanca (denaturacija) na temperaturi 94°C, tijekom 5 min
- 40 ciklusa na 94°C 30 s
- Vezanje početnica na komplementarnu sekvencu DNA (*engl. annealing*) na temperaturi 52 °C, tijekom 30 s

41
- produljivanje početnice pomoću DNA polimeraze (ekstenzija) na temperaturi 72°C, tijekom 1.5 min
- finalna ekstenzija na temperaturi 72°C, tijekom 10 min

Za gen \textit{Ag} (180):

- razdvajanje dvostrukog DNA lanca (denaturacija) na temperaturi 94°C, tijekom 5 min
- 40 ciklusa na 93°C 1 min
- Vezanje početnice na komplementarnu sekvencu DNA (\textit{engl. annealing}) na temperaturi 57°C, tijekom 2 min
- produljivanje početnice pomoću DNA polimeraze (ekstenzija) na temperaturi 70°C, tijekom 2 min
- finalna ekstenzija na temperaturi 72°C, tijekom 10 min

Za gen \textit{LEC} (181):

- razdvajanje dvostrukog DNA lanca (denaturacija) na temperaturi 95°C, tijekom 5 min
- 35 ciklusa na 94°C 40 s
- Vezanje početnice na komplementarnu sekvencu DNA (\textit{engl. annealing}) na temperaturi 55°C, tijekom 60 s
- produljivanje početnice pomoću DNA polimeraze (ekstenzija) na temperaturi 72°C, tijekom 2 min
- finalna ekstenzija na temperaturi 72°C, tijekom 10 min
Za gene *jhp0917* i *jhp0918* (133):

- razdvajanje dvostrukog DNA lanca (denaturacija) na temperaturi 94°C, tijekom 5 min
- 35 ciklusa na 94°C 2 min
- Vezanje početnica na komplementarnu sekvencu DNA (*engl. annealing*) na temperaturi 57°C, tijekom 30 s
- produljivanje početnice pomoću DNA polimeraze (ekstenzija) na temperaturi 72°C, tijekom 1 min
- finalna ekstenzija na temperaturi 72°C, tijekom 7 min

Kontrolni sojevi CCUG 17874 i 47164 korišteni su kao pozitivne kontrole, a destilirana voda kao negativna kontrola.
Detekcija PCR produkata elektroforezom u agaroznom gelu

Produkti PCR reakcije analizirani su elektroforezom u 2% agaroznom gelu. Deset µl dobivenog PCR produkta i 1 µl boje (gel loading buffer) aplicirano je na agarozna gel koji je po završetku elektroforeze (100 V, 60 min) obojen etidij bromidom, te fotografiran pod ultravioletnim svjetlom. Za određivanje veličine PCR produkata korišten je DNA Molecular Weight Marker XIV (100-500 bp) (Roche Diagnostics, Mannheim, Germany).
4.4. Kemikalije

Mikrobiološke podloge

Tioglikolatni bujon
bio triptikaza 15 g/l
l-cistein 0,5 g/l
dekstroza 5g/L
ekstrkt kvasca 5g/l
NaCl 2,5 g/L
Na tioglikolat 0,5 g/l
Rezaurin 0,001 g/l
Agar 0,75 g/L

Columbia agar baza s konjskom krvi i antibiotskim suplementom
Otopiti 42,5 g praha (BioMerieux) u 1L destilirane vode. Grijati uz često miješanje do vrenja, da se potpuno otopi prah. Autoklavirati pri 120° C 15 minuta. Ohladiti bazu na 45-50° C i dodati 7% sterilne defibrinirane konjske krvi te antibiotski suplement SR0147E.

Helicobacter pylori
Selective Supplement (Dent) SR0147 (Oxoid)
Vankomicin 5,0 mg
Trimethoprim 2,5 mg
Cefsulodin 2,5 mg
Amphotericin B 2,5 m

Brucella bujon (BD BBL Brucella Broth)

GENbox (BioMerieux) - Gas pak vreće bez katalizatora za postizanje mikroaerofilne atmosfere.
Određivanje antimikrobne osjetljivosti
E testovi (BioMerieux- France)

Izolacija DNA

Komercijalni kit: „High Pure PCR Template Preparation Kit” Version 16,0
(Roche Diagnostics, Njemačka)

Lančana reakcija polimeraze

Početnice (SIGMA)

PCR Master Mix (Roche Diagnostics) - komercijalni set, sadrži PCR vodu i
Master Mix, 2X. PCR Master Mix već pripremljena otopina u sastavu: Taq
DNA Polymerase, dNTPs, MgCl₂ i reakcijski pufer.

Detekcija produkata

Agaroza (2%) (Sigma)
Agaroza 2 g otopiti u 100 ml 1x TAE pufera

TAE pufer 1x
Tris-HCl 0,04 M
NaCl 0,02 M
EDTA 2 mM
Na - acetat 0,02 M pH 8,3

Loading pufer (eng. Loading Buffer) (Sigma)
Bromfenol plavo 0,25 %
Xilen cijanol 0,25%
Ficoll 400 u vodi 25%
DNA molekularni marker, (Roche Diagnostics)
Digestijom dobiveni fragmenti DNA razlike 100 parova baza

Etidij bromid
10 mg etidij-bromida na 1ml destilirane vode. Dugo otapati na mješalici dok nije sav otopljen. Čuvati na tamnom.
4.5. Medicinski uređaji i pribor

Lonci za anaerobnu inkubaciju Medias
Vortex Sarstedt
Automatske pipete Eppendorf Research
Centrifuga Abott
Termoblok Abott
Aparat za umnažanje DNK, GeneAmp® PCR Systems 97000, Applied Biosystems
Oprema za elektroforezu, Submarine Cosulich
Spektrofotometar, Metertech 960
4.6. Statistička analiza

Statističke analize provedene su u statističkom programskom paketu STATISTICA verzija 12 (StatSoft Inc., OK, SAD), a grafički prikazi rezultata pripremljeni su u programu Excel® 2013 (Microsoft® Corporation, SAD). Kvalitativne/kategorijske varijable prikazane su kao broj i udio (%). Kvantitativne varijable prikazane su kao aritmetička sredina (AS) i standardna devijacija (SD). Usporedba među skupinama za kvalitativne varijable provedena je hi-kvadrat (χ²) testom ili Fisherovim egzaktnim testom ovisno o raspodjeli. Usporedba među skupinama za kvantitativne varijable provedena je Studentovim t-testom (t) ili Mann-Whitney U-testom (Z) ovisno o raspodjeli ili analizom varijance (ANOVA). Ocjena povezanosti među kvalitativnim varijablama provedena je Spearmanovim koeficijentom korelacije (R) ili logističkom regresijskom analizom. Rezultat logističke regresijske analize prikazan je kao omjer šansi (OR) uz 95%-tni interval pouzdanosti. Statistički značajnima smatrani su rezultati svih analiza uz vjerojatnost manju od 5% (P<0.05).
5. REZULTATI

5.1. Opće značajke bolesnika

5.1.1. Bolesnici prema dobi i spolu

U ispitivanje su uključeni uzorci 103 bolesnika prosječne dobi (SD) 55.8 (±11.8) godina (raspon 28-81 godinu, Graf 1), od čega je 78 (80.34 %) bolesnika bilo ženskog spola, a 25 (25.75%) muškaraca. Nije utvrđena statistički značajna razlika u raspodjeli dobi ispitanika prema spolu iako su muškarci bili prosječno mlađi (muškarci, 52.4±12.2 god.; žene, 56.9±11.5 god.; t=1.674, P=0.097; Graf 1).

Graf 1. Raspodjela bolesnika prema dobi i spolu (N=103)
5.1.2. Bolesnici prema subjektivnim tegobama

Od subjektivnih tegoba bolesnici su najčešće naveli bol u epigastriju (n=59), žgaravicu (n=39), mučninu (n=16) te napuhnutost (n=12), bilo kao jedan simptom ili u kombinaciji s preostala tri.

Od 103 bolesnika njih 4 navelo je tri simptoma, 19 bolesnika imalo je dva simptoma, a preostalih 80 navelo je samo jedan simptom.

Tablica 3 i Graf 2 prikazuju raspodjelu bolesnika prema subjektivnim tegobama.

Tablica 3. Raspodjela bolesnika prema subjektivnim tegobama

<table>
<thead>
<tr>
<th>Subjektivne tegobe</th>
<th>Broj (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bol u epigastriju</td>
<td>59 (57.3%)</td>
</tr>
<tr>
<td>Žgaravica</td>
<td>41 (39.8%)</td>
</tr>
<tr>
<td>Mučnina</td>
<td>16 (15.5%)</td>
</tr>
<tr>
<td>Napuhnutost</td>
<td>12 (11.7%)</td>
</tr>
</tbody>
</table>

Graf 2. Raspodjela bolesnika prema subjektivnim tegobama
5.1.3. Bolesnici prema endoskopski utvrđenim dijagnozama

Neulkusnu dispepsiju (NUD) imalo je 68 (66.0%) bolesnika, erozije/ulkus želuca (EUV) 22 (21.4%), a erozije/ulkus duodenuma (EUD) 13 (12.6%) bolesnika.

Tablica 4 i Graf 3 prikazuju raspodjelu bolesnika prema endoskopski utvrđenim dijagnozama.

Tablica 4. Raspodjela bolesnika prema endoskopski utvrđenim dijagnozama (N=103)

<table>
<thead>
<tr>
<th>Endoskopski utvrđena dijagnoza</th>
<th>Broj (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUD</td>
<td>68 (66.0%)</td>
</tr>
<tr>
<td>EUV</td>
<td>22 (21.4%)</td>
</tr>
<tr>
<td>EUD</td>
<td>13 (12.6%)</td>
</tr>
</tbody>
</table>

NUD - neulkusna dispepsija, EUV-erozije/ulkus želuca, EUD-erozije/ulkus duodenuma

Graf 3. Raspodjela bolesnika prema endoskopski utvrđenim dijagnozama (N=103)

NUD - neulkusna dispepsija, EUV-erozije/ulkus želuca, EUD-erozije/ulkus duodenuma
5.1.4. Bolesnici prema patohistološkom nalazu sluznice želuca

Patohistološkom analizom sluznice želuca dobiveni su rezultati o zastupljenosti pojedinih stupnjeva histoloških parametara gastritisa (inflamacija, aktivnost, atrofija, gustoća *H. pylori*, metaplazija - klasificirano prema Sydneyskom sustavu) prikazani u Tablici 5.
<table>
<thead>
<tr>
<th>Karakteristike</th>
<th>Pozitivno</th>
<th>Skor</th>
<th>Broj (%)</th>
<th>AS (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktivnost</td>
<td>68 (66%)</td>
<td>35</td>
<td>35 (34.0)</td>
<td>50 (48.5)</td>
</tr>
<tr>
<td>Inflamacija</td>
<td>103 (100%)</td>
<td>35</td>
<td>35 (34.0)</td>
<td>65 (63.1)</td>
</tr>
<tr>
<td>Inflamatorni skor</td>
<td></td>
<td>2.5</td>
<td>(1.1)</td>
<td></td>
</tr>
<tr>
<td>Atrofija</td>
<td>7 (6.8%)</td>
<td>96</td>
<td>7 (6.8)</td>
<td></td>
</tr>
<tr>
<td>Metaplazija*</td>
<td>25 (24.3%)</td>
<td>78</td>
<td>78 (75.7)</td>
<td>25 (24.3)</td>
</tr>
<tr>
<td>H. pylori</td>
<td>92 (89.3%)</td>
<td>11</td>
<td>11 (10.7)</td>
<td>33 (32.0)</td>
</tr>
<tr>
<td>Korpus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktivnost</td>
<td>64 (62.2 %)</td>
<td>39</td>
<td>39 (37.9)</td>
<td>53 (51.5)</td>
</tr>
<tr>
<td>Inflamacija</td>
<td>103 (100%)</td>
<td>55</td>
<td>55 (53.4)</td>
<td>43 (41.7)</td>
</tr>
<tr>
<td>Inflamatorni skor</td>
<td></td>
<td>2.2</td>
<td>(1.0)</td>
<td></td>
</tr>
<tr>
<td>Atrofija</td>
<td>5 (4.9%)</td>
<td>98</td>
<td>98 (95.1)</td>
<td>4 (3.9)</td>
</tr>
<tr>
<td>Metaplazija*</td>
<td>14 (13.6%)</td>
<td>89</td>
<td>89 (86.4)</td>
<td>14 (13.6)</td>
</tr>
<tr>
<td>H. pylori</td>
<td>99 (96.1%)</td>
<td>4</td>
<td>4 (3.9)</td>
<td>61 (59.2)</td>
</tr>
<tr>
<td>Ukupni skor</td>
<td></td>
<td>3.8</td>
<td>(1.5)</td>
<td></td>
</tr>
<tr>
<td>Ukupni skor antrum+korpus</td>
<td></td>
<td>8.4</td>
<td>(2.5)</td>
<td></td>
</tr>
</tbody>
</table>

AS – aritmetička sredina, SD – standardna devijacija,
* klasificirano prema Sydneyском sustavu: metabolija nije utvrđena=0, metabolija=1.
U korpusu želuca inflamacija je bila prisutna u svih 103 (100%) bolesnika, pri čemu su najzastupljenije bile promjene prvog stupnja (55/103 bolesnika, 53.4 %), a drugog stupnja u 43/103 bolesnika (41.7%) te trećeg stupnja u 5/103 bolesnika (4.9%). Aktivnost upale bila je prisutna u 64/103 bolesnika (62.2%), pri čemu je prvi stupanj promjena bio najzastupljeniji (53/103 bolesnika, 51.5%), a drugi stupanj je imalo 11/103 bolesnika (10.7%). Atrofične promjene bile su prisutne u 5/103 (4.9%) bolesnika, a metaplazija u 14/103 bolesnika (13.6%) (Tablica 5 i Graf 4).

Graf 4. Raspodjela histoloških parametara u korpusu želuca (N=103)
U antrumu želuca inflamacija je bila prisutna u svih 103 (100%) bolesnika, pri čemu su najzastupljenije bile promjene drugog stupnja (65/103 bolesnika, 48.5%), a prvog stupnja u 35/103 bolesnika (34.0%) te trećeg stupnja u 3/103 bolesnika (2.9%). Aktivnost upale bila je prisutna u 68/103 (66%) bolesnika pri čemu je prvi stupanj promjena bio najzastupljeniji (50/103 bolesnika, 48.5%). Atrofične promjene bile su prisutne u 7/103 (6.8%) bolesnika, a intestinalna metaplazija u 25/103 (24.3%) bolesnika (Tablica 5 i Graf 5).

Graf 5. Raspodjela histoloških parametara u antrumu želuca (N=103)
5.2. Učestalost i karakteristike \textit{cagPAI} u \textit{Helicobacter pylori} izolatima

Od 103 \textit{H.pylori} izolata, 16 izolata (15.5\%) je imalo izbrisani \textit{cagPAI}, a 87 (84.5\%) izolata parcijalno izbrisani \textit{cagPAI}. Nijedan izolat nije posjedovao intaktni/kompletni \textit{cagPAI} (Graf 6).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{graf6.png}
\caption{Graf 6. Učestalost \textit{cagPAI} u \textit{Helicobacter pylori} izolatima (N=103)}
\end{figure}

Analiza učestalosti broja gena po svakom pojedinom parcijalno izbrisanom \textit{cagPAI} (n=87) pokazala je da je najviše bilo \textit{cagPAI} sa 6 gena, zatim sa 7 gena, slijede sa 5, 8, 1, 2, 4, 9, 3 gena (Tablica 6, Graf 7).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Broj izolata \textit{H.pylori}} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\textbf{Broj pozitivnih \textit{cagPAI} gena} & \textbf{5} & \textbf{4} & \textbf{1} & \textbf{2} & \textbf{9} & \textbf{31} & \textbf{27} & \textbf{6} & \textbf{2} \\
\hline
\textbf{Broj (\%)} & (5.8\%) & (4.6\%) & (1.2\%) & (2.3\%) & (10.3\%) & (35.6\%) & (31.1\%) & (6.9\%) & (2.3\%) \\
\hline
\end{tabular}
\caption{Tablica 6. Učestalost broja gena u parcijalno izbrisanim \textit{cagPAI} (n=87)}
\end{table}
Analiza vrste gena po svakom pojedinačnom parcijalno izbrisanim cagPAI (n=87) pokazala je da najveći broj cagPAI, njih 24, ima kombinaciju slijedećih gena: cagA1, cagA2, cagE, cagM, cagT, Apcag, LEC. Slijedi 19 izolata s kombinacijom gena cagA1, cagA2, cagE, cagM, cagT, Apcag; 5 izolata s kombinacijom cagA1, cagA2, cagE, cagM, cagT, LEC. Ostale kombinacije gena zastupljene su u manjem broju (1-3) izolata (Tablica 7).
Tablica 7. Kombinacije gena u parcijalno izbrisanim cagPAI (n=87)

<table>
<thead>
<tr>
<th>Pozitivni cagPAI geni</th>
<th>Broj</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A2 E M T Apcag LEC</td>
<td>24</td>
<td>23.3</td>
</tr>
<tr>
<td>A1 A2 E M T Apcag</td>
<td>19</td>
<td>18.4</td>
</tr>
<tr>
<td>A1 A2 E M T LEC</td>
<td>5</td>
<td>4.9</td>
</tr>
<tr>
<td>A1 A2 E M Apcag</td>
<td>3</td>
<td>2.9</td>
</tr>
<tr>
<td>A1 A2 E M trnA T Apcag LEC trnB</td>
<td>3</td>
<td>2.9</td>
</tr>
<tr>
<td>LEC</td>
<td>3</td>
<td>2.9</td>
</tr>
<tr>
<td>A1 A2 E M T</td>
<td>3</td>
<td>2.9</td>
</tr>
<tr>
<td>A1 A2 A3 E M T Apcag</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>A1 A2 A3 E M T Apcag LEC</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>A1 A2 E M T Apcag LEC trnB</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>A1 E M T Apcag LEC</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>A1 A2 E M trnA T Apcag LEC</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>trnA trnB</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>A1 A3 E T LEC</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A1 A2 E M Apcag LEC</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A1 A2 E M trnA Apcag</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A1 T Apcag LEC</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>E trnA trnB</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A1 E</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A1 A2 E M LEC</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A1</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>E M T LEC</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A1 A2 M T Apcag LEC</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>E trnA</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A2 E M T Apcag LEC</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A2 E M T Apcag</td>
<td>1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

5.3. Karakteristike bolesnika prema tipu cagPAI

Tablica 8. prikazuje razdiobu bolesnika prema spolu, dobi i simptomima u odnosu na izbrisani i parcijalno izbrisani cagPAI.

Tablica 8. Bolesnici prema tipu cagPAI

<table>
<thead>
<tr>
<th></th>
<th>Izbrisani cagPAI</th>
<th>Parcijalno izbrisani cagPAI</th>
<th>Statistika</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 (15.5%)</td>
<td>87 (84.5%)</td>
<td>χ²=0.005, P=0.941</td>
</tr>
<tr>
<td>Spol</td>
<td>Muškarci</td>
<td>4 (16%)</td>
<td>21 (84%)</td>
</tr>
<tr>
<td></td>
<td>Žene</td>
<td>12 (15.4%)</td>
<td>66 (84.6%)</td>
</tr>
<tr>
<td>Dob (god.)</td>
<td>AS±SD</td>
<td>55.2±15.5</td>
<td>t=0.225, P=0.822</td>
</tr>
<tr>
<td></td>
<td>55.9±11.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simptomi</td>
<td>bol u epigastriju</td>
<td>10 (62.5%)</td>
<td>χ²=0.211, P=0.646</td>
</tr>
<tr>
<td></td>
<td>napuhnutost</td>
<td>1 (6.3%)</td>
<td>χ²=0.537, P=0.464</td>
</tr>
<tr>
<td></td>
<td>žgaravica</td>
<td>7 (43.8%)</td>
<td>χ²=0.123, P=0.726</td>
</tr>
<tr>
<td></td>
<td>mučnina</td>
<td>4 (25%)</td>
<td>χ²=1.294, P=0.255</td>
</tr>
</tbody>
</table>

AS – aritmetička sredina, SD – standardna devijacija.

Iz Tablice 8 je vidljivo da statističkom obradom nije utvrđena statistički značajna razlika za raspodjelu tipa cagPAI prema spolu (χ²=0.005, df=1, p=0.941) ili prema subjektivnim simptomima (P>0.250 za sve simptome). Nije utvrđena niti statistički značajna razlika u dobi bolesnika prema tipu cagPAI (t=0.225, P=0.822).
5.4. Endoskopske dijagnoze prema tipu *cag*PAI

Najviše izbrisanih *cag*PAI bilo je u skupini bolesnika s neulkusnom dispepsijom 9 (13.2%), a najmanje u bolesnika s erozijom/ulkusom dudenuma 2 (15.4%). Bolesnici s neulkusnom dispepsijom imali su i najviše parcijalno izbrisanih *cag*PAI 59 (86.8%) (Tablica 9).

<table>
<thead>
<tr>
<th>Endoskopska dg</th>
<th>Parcijalno izbrisani cagPAI</th>
<th>Izbrisani cagPAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUV</td>
<td>22 (21.4%)</td>
<td>17 (77.3%)</td>
</tr>
<tr>
<td>EUD</td>
<td>13 (12.6%)</td>
<td>11 (84.6%)</td>
</tr>
<tr>
<td>ND</td>
<td>68 (66.0%)</td>
<td>59 (86.8%)</td>
</tr>
</tbody>
</table>

NUD- neulkusna dispepsija, **EUV**-erozije/ulkus želuca, **EUD**-erozije/ulkus duodenuma

Statističkom obradom nije utvrđena statistički značajna razlika raspodjele tipa *cag*PAI prema endoskopskim dijagnozama ($\chi^2=1.142$, df=2, $p=0.565$; Tablica 9).
5.5. Patohistološke promjene želučane sluznice prema tipu \textit{cagPAI}

U Tablici 10 prikazana je distribucija izbrisanog \textit{cagPAI} i parcijalno izbrisanog \textit{cagPAI} u sklopu patohistoloških promjena želučane sluznice antruma i korpusa.

\textbf{U antrumu} želuca inflamacija je prisutna u svih 103 (100\%) bolesnika, pri čemu je parcijalno izbrisani \textit{cagPAI} najzastupljeniji u bolesnika s upalnim promjenama drugog stupnja, 56/87 bolesnika (64.4\%), prvog stupnja u 28/87 bolesnika (32.2\%) i trećeg stupnja u manjem broju bolesnika, 3/87 (3.4\%). Aktivnost upale prisutna je u 68/103 (66\%) bolesnika, pri čemu je parcijalno izbrisani \textit{cagPAI} najzastupljeniji u bolesnika s prvim stupnjem aktivnosti upale 33/87 (37.9\%). Atrofične promjene prisutne su u 5/87 (5.7\%) bolesnika s parcijalno izbrisanim \textit{cagPAI}, a intestinalna metaplazija u 22/87 (25.3\%) bolesnika s parcijalno izbrisanim \textit{cagPAI} (Tablica 10).

\textbf{U korpusu} želuca inflamacija je prisutna u svih 103 (100\%) bolesnika, pri čemu je parcijalno izbrisani \textit{cagPAI} najzastupljeniji u bolesnika s upalnim promjenama prvog stupnja, 45/87 (51.7\%) bolesnika, slijedi parcijalno izbrisani \textit{cagPAI} u promjenama drugog stupnja u 37/87 (42.5\%) bolesnika i u 5/87 (5.7\%) bolesnika s promjenama trećeg stupnja. Aktivnost upale je prisutna u 64/103 (62.2\%) bolesnika pri čemu je parcijalno izbrisani \textit{cagPAI} najzastupljeniji u bolesnika s prvim stupnjem aktivnosti upale, 46/87 (52.9\%) bolesnika. Drugi stupanj aktivnosti imalo je 9/87 (10.3\%) bolesnika s parcijalno izbrisanim \textit{cagPAI} (Tablica 10). Atrofične promjene 1 i 2 stupnja prisutne su u 4/87 (4.5\%) bolesnika s parcijalno izbrisanim \textit{cagPAI}, a intestinalna metaplazija u 12/87 (13.8\%) bolesnika s parcijalno izbrisanim \textit{cagPAI} (Tablica 10).

Iz Tablice 8 je vidljivo da nije utvrđena statistički značajna razlika patohistoloških promjena između bolesnika s izbrisanim \textit{cagPAI} i onih s parcijalno izbrisanim \textit{cagPAI} (p>0.05 za sve varijable koje opisuju patohistološke promjene).
<table>
<thead>
<tr>
<th></th>
<th>Karakteristike</th>
<th>Skor</th>
<th>Izbrisani cagPAI</th>
<th>Parcijalno izbrisani cagPAI</th>
<th>Statistika</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aktivnost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>2 (12.5)</td>
<td>33 (37.9)</td>
<td>Z=1.347, P=0.178</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>11 (68.7)</td>
<td>39 (44.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3 (18.8)</td>
<td>12 (13.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3 (3.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inflamacija</td>
<td>1</td>
<td>7 (43.8)</td>
<td>28 (32.2)</td>
<td>Z=0.851, P=0.395</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9 (56.2)</td>
<td>56 (64.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3 (3.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inflamatorni skor</td>
<td>AS±SD</td>
<td>2.6±1.0</td>
<td>2.5±1.1</td>
<td>t=0.331, P=0.741</td>
</tr>
<tr>
<td></td>
<td>Atrofija</td>
<td>0</td>
<td>14 (87.5)</td>
<td>82 (94.3)</td>
<td>Z=0.423, P=0.672</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2 (12.5)</td>
<td>5 (5.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metaplazija</td>
<td>0</td>
<td>13 (81.3)</td>
<td>65 (74.7)</td>
<td>Z=0.410, P=0.682</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3 (18.7)</td>
<td>22 (25.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. pylori</td>
<td>0</td>
<td>3 (18.7)</td>
<td>8 (9.2)</td>
<td>Z=0.542, P=0.588</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>4 (25)</td>
<td>29 (33.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6 (37.5)</td>
<td>28 (32.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3 (18.7)</td>
<td>22 (25.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ukupni skor</td>
<td>AS±SD</td>
<td>4.5±1.8</td>
<td>4.6±1.8</td>
<td>t=0.108, P=0.915</td>
</tr>
<tr>
<td></td>
<td>Korpus</td>
<td>Aktivnost</td>
<td>0</td>
<td>7 (43.7)</td>
<td>32 (36.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>7 (43.7)</td>
<td>46 (52.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2 (12.5)</td>
<td>9 (10.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inflamacija</td>
<td>1</td>
<td>10 (62.5)</td>
<td>45 (51.7)</td>
<td>Z=0.815, P=0.415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6 (37.5)</td>
<td>37 (42.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>5 (5.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inflamatorni skor</td>
<td></td>
<td>2.1±1.0</td>
<td>2.3±1.0</td>
<td>t=0.754, P=0.453</td>
</tr>
<tr>
<td></td>
<td>Atrofija</td>
<td>0</td>
<td>15 (93.7)</td>
<td>83 (95.4)</td>
<td>Z=0.096, P=0.924</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1 (6.3)</td>
<td>3 (3.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>1 (1.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metaplazija</td>
<td>0</td>
<td>14 (87.5)</td>
<td>75 (86.2)</td>
<td>Z=0.077, P=0.938</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2 (12.5)</td>
<td>12 (13.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. pylori</td>
<td>0</td>
<td>1 (6.3)</td>
<td>3 (3.4)</td>
<td>Z=1.812, P=0.070</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>13 (81.2)</td>
<td>48 (55.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1 (6.3)</td>
<td>24 (27.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1 (6.3)</td>
<td>12 (13.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ukupni skor</td>
<td>AS±SD</td>
<td>3.4±1.6</td>
<td>4.0±1.5</td>
<td>t=1.382, P=0.170</td>
</tr>
<tr>
<td></td>
<td>Ukupni skor antrum+korpus</td>
<td>AS±SD</td>
<td>7.9±1.8</td>
<td>8.5±1.8</td>
<td>t=0.919, P=0.360</td>
</tr>
</tbody>
</table>

AS – aritmetička sredina, SD – standardna devijacija.
5.6. Učestalost cagPAI gena u Helicobacter pylori izolatima

PCR metodom detekcije Ag gena potvrđena je identičnost H. pylori DNA u svih 103 izolata (Slika 1). Utvrđena je pojedinačna učestalost cagPAI gena: cagA1 71.8%, cagA2 69.9%, cagA3 5.8%, cagE 75.7%, cagM 71.8%, tnpA 9.7% cagT 68.0%, Apcag 63.1%, LEC 48.5% i tnpB 6.3% (Tablica 11, Graf 8, Slike 2-8).

Tablica 11. Učestalost cagPAI gena

<table>
<thead>
<tr>
<th>Geni</th>
<th>Cag A1</th>
<th>Cag A2</th>
<th>Cag A3</th>
<th>Cag E</th>
<th>Cag M</th>
<th>tnpA</th>
<th>Cag T</th>
<th>Apcag</th>
<th>LEC</th>
<th>tnpB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozitivno</td>
<td>71.8%</td>
<td>69.9%</td>
<td>5.8%</td>
<td>75.7%</td>
<td>71.8%</td>
<td>9.7%</td>
<td>68.0%</td>
<td>63.1%</td>
<td>48.5%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Negativno</td>
<td>28.2%</td>
<td>30.1%</td>
<td>94.2%</td>
<td>24.3%</td>
<td>28.2%</td>
<td>90.3%</td>
<td>32.0%</td>
<td>36.9%</td>
<td>51.5%</td>
<td>93.7%</td>
</tr>
<tr>
<td>Ukupno</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Graf 8. Raspodjela H. pylori izolata prema izoliranim genima virulencije
Linije 1-14 izolati *H. pylori*, linija 15 negativna kontrola (sterilna destilirana voda)

Slika 1. Agarozni gel s produktima PCR reakcije amplifikacije sa začetnicama za detekciju *Ag* gena (298pb) prisutnog u svih *H. pylori* sojeva (pozitivna kontrola)
Linija 1 M – DNA marker, linije 1, 15, 29 pozitivna kontrola (CCUG 17874), linije 3-5, 11, 13, 14, 16, 17, 19-21, 23, 26, 27, 30, 31, 34, 37, 38, 40-42 pozitivna amplifikacija \(cagA1 \) (349 bp)
CCUG – Culture Collection University of Gothenburg

Slika 2. Agarozni gel s produktima PCR reakcije amplifikacije sa začetnicama za detekcijo \(cagA1 \) gena (349 bp)
Linija 1 M - DNA marker, linije 1, 15 pozitivna kontrola (CCUG 17874), linije 2, 4, 5, 7, 8, 9, 12, 16, 18, 19, 20, 21, 22, 24, 25, 26, 28 pozitivna amplifikacija cagA2 (320bp)

CCUG – Culture Collection University of Gothenburg

Slika 3. Agarozni gel s produktima PCR reakcije amplifikacije sa začetnicama za detekciju cagA2 gena (320 bp)
Linija 1 M – DNA marker, linije 14, 28 pozitivna kontrola (CCUG 17874) za cagE, linije 1, 3, 4, 5, 7, 8, 10, 11, 13 pozitivna amplifikacija CagE (329 bp); linije 14, 28 negativna kontrola za cagA3, linije 13 pozitivna amplifikacija cagA3 (701 bp)

CCUG – Culture Collection University of Gothenburg

Slika 4. Agarozni gel s produktima PCR reakcije amplifikacije sa začetnicama za detekciju cagA3 i cagE gena (701 i 329 bp)
Linija 1 M – DNA marker, linije 1, 2 pozitivna kontrola (CCUG 17874, 47164) za cagM, linije 4, 6, 7, 8, 10, 11, 13, 14 pozitivna amplifikacija CagM (586bp); linija 1 pozitivna kontrola (CCUG 17834), linija 2 negativna kontrola (CCUG 47164) za tnpA gen, linije 10-12, 22 pozitivna amplifikacija tnpA (344 bp)
CCUG – Culture Collection University of Gothenburg

Slika 5. Agarozni gel s produktima PCR reakcije amplifikacije sa začetnicama za detekciju cagM i tnpA gena (586 i 344 bp)
Linija 1 M – DNA marker, linije 13, 14, 27, 28 pozitivna kontrola (CCUG 17874, 47164), linije 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 18, 19, 22, 24, 25 pozitivna amplifikacija Apcag; linije 1-8, 10-12, 15-19, 21-25 pozitivna amplifikacija cagT (301 pb)
CCUG – Culture Collection University of Gothenburg

Slika 6. Agarozni gel s produktima PCR reakcije amplifikacije sa začetnicama za detekciju Apcag i cagT gena (730 i 301 bp)
Linija 1 M – DNA marker, linija 13 pozitivna kontrola (CCUG 17874), linija 14 negativna kontrola (CCUG 47164), linije 1, 3, 4, 7, 8, 10, 11 pozitivna amplifikacija LEC (384 pb)
CCUG – Culture Collection University of Gothenburg

Slika 7. Agarozni gel s produktima PCR reakcije amplifikacije sa začetnicama za detekcijo LEC gena (384 bp)
Linija 1 M – DNA marker, linije 1, 15, 29 pozitivna kontrola (CCUG 17874), linije 7, 36, 38 pozitivna amplifikacija tnpA (569 pb)
CCUG – Culture Collection University of Gothenburg

Slika 8. Agarozni gel s produktima PCR reakcije amplifikacije sa začetnicama za detekciju tnpB gena (569 bp)
5.7. Usporedba cagPAI gena s patohistološkim promjenama želučane sluznice

Usporedbom rezultata dobivenih PCR metodom o prisustvu cagPAI gena i patohistološkog nalaza gastritisa sluznice korpusa i antruma (klasificiranog prema Sydneyskom sustavu) želuca dobiveni su rezultati u Tablici 12.

Prisustvo CagA2 statistički značajno povećava rizik za viši stupanj inflamacije antruma ($\chi^2=6.872$, df=2, $P=0.032$; OR za stupanj 2/3 prema stupnju 1=2.941, 95% CI 1.216-7.217), za značajno veću gustoću H. pylori u korpusu ($\chi^2=16.700$, df=3, $P=0.001$; OR za stupanj 2/3 prema stupnju 0/1 = 15.02, 95% CI 4.558-67.12) te za veći ukupni skor za korpus (CagA2+ AS±SD, 4.1±1.5; CagA2- 3.3±1.4; t=2.687, $P=0.008$; OR za jediničnu promjenu = 3.841, 95% CI 1.531-9.638; Tablica 12).

Prisustvo CagM statistički značajno povećava rizik za značajno veću gustoću H. pylori u korpusu ($\chi^2=9.864$, df=3, $P=0.020$; OR za stupanj 2/3 prema stupnju 0/1 = 8.665, 95% CI 2.621-38.73) te za veći ukupni skor za korpus (CagM+ AS±SD, 4.1±1.6; CagA2- 3.4±1.4; t=2.021, $P=0.046$; OR za jediničnu promjenu = 3.259, 95% CI 1.293-8.215; Tablica 12).

Prisustvo CagT i LEC statistički značajno smanjuju rizik za atrofiju u antrumu (cagT, $\chi^2=5.352$, df=1, $P=0.021$, OR=0.165, 95% CI 0.030-0.918; LEC, $\chi^2=7.085$, df=1, $P=0.008$, OR=0, 95% CI 0-0.524; Tablica 12).

Prisustvo Ap cag statistički je značajno povećava rizik za viši inflamatorni skor antruma (Ap cag+ AS±SD, 2.7±1.1; Ap cag- 2.2±1.0; t=2.283, $P=0.025$; OR za jediničnu promjenu = 2.448, 95% CI 1.285-26.008) te za veći ukupni skor za antrum (Ap cag+ AS±SD, 4.9±1.7; Ap cag- 4.0±1.7; t=2.332, $P=0.022$; OR za jediničnu promjenu = 2.349, 95% CI 1.027-5.374; Tablica 12).

Tablica 12 prikazuje samo statistički značajne gene.
Tablica 12. Usporedba cagPAI gena s patohistološkim promjenama želučane sluznice

<table>
<thead>
<tr>
<th>Patohistologija</th>
<th>Stupanj</th>
<th>Negativno</th>
<th>Pozitivno</th>
<th>Statistika</th>
<th>OR (95% CI) za jediničnu promjenu i promjenu stupnja</th>
</tr>
</thead>
<tbody>
<tr>
<td>CagA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflamacija, antrum</td>
<td>1</td>
<td>16</td>
<td>19</td>
<td>$\chi^2=6.872, P=0.032$</td>
<td>2.941 (1.216-7.217) za stupanj 2/3 vs. 1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori, korpus</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>$\chi^2=16.700, P=0.001$</td>
<td>15.02 (4.558-67.12) za stupanj 2/3 vs. 0/1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>25</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori, korpus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukupni skor, korpus</td>
<td>AS±SD</td>
<td>3.3±1.4</td>
<td>4.1±1.5</td>
<td>t=2.687, P=0.008</td>
<td>3.841 (1.531-9.638)</td>
</tr>
<tr>
<td>CagM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pylori, korpus</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>$\chi^2=9.864, P=0.020$</td>
<td>8.665 (2.621-38.73) za stupanj 2/3 vs. 0/1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>24</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukupni skor, korpus</td>
<td>AS±SD</td>
<td>3.4±1.4</td>
<td>4.1±1.6</td>
<td>t=2.021, P=0.046</td>
<td>3.259 (1.293-8.215)</td>
</tr>
<tr>
<td>cagT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrofija, antrum</td>
<td>0</td>
<td>28</td>
<td>68</td>
<td>$\chi^2=5.352, P=0.021$</td>
<td>0.165 (0.030-0.918)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ap cag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflamatorni skor, antrum</td>
<td>AS±SD</td>
<td>2.2±1.0</td>
<td>2.7±1.1</td>
<td>t=2.283, P=0.025</td>
<td>2.448 (1.285-26.008)</td>
</tr>
<tr>
<td>Ukupni skor, antrum</td>
<td>AS±SD</td>
<td>4.0±1.7</td>
<td>4.9±1.7</td>
<td>t=2.332, P=0.022</td>
<td>2.349 (1.027-5.374)</td>
</tr>
<tr>
<td>LEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrofija, antrum</td>
<td>0</td>
<td>46</td>
<td>50</td>
<td>P=0.016*</td>
<td>0 (0-0.524)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Fisherov egzakt test, AS – aritmetička sredina, SD – standardna devijacija.
5.8. Usporedba cagPAI gena s endoskopski utvrđenim dijagnozama

CagA1, cagA2, cagE, cagT, cagM, tnpA, tnpB, Apcag, LEC najzastupljeniji su u bolesnika s endoskopski utvrđenom dijagnozom neulkusne dispepsije (NUD), 50/74, 48/72, 52/78, 48/74, 9/10, 6/8, 41/65, 34/50; susljedno. CagA3 je jednakomjerno raspoređen, po 2/6 u sve tri skupine bolesnika. Kod bolesnika s endoskopski utvrđenom dijagnozom erozije/ulkus želuca nije detektiran ni jedan tnpA (0/10) i tnpB gen (0/8).

Nije utvrđena statistički značajna povezanost prisutnosti niti jednog od 10 cagPAI gena s endoskopskom dijagnozom (p>0.16 za sve cagPAI gene).
Tablica 13. Prisustvo pozitivnog nalaza gena cagPAI prema endoskopski utvrđenoj dijagnozi

<table>
<thead>
<tr>
<th>cagPAI gen</th>
<th>Endoskopska dijagnoza</th>
<th>Pozitivan</th>
<th>Negativan</th>
<th>Statistika</th>
</tr>
</thead>
<tbody>
<tr>
<td>CagA1</td>
<td>NUD</td>
<td>50 (73.5%)</td>
<td>18 (26.5%)</td>
<td>$\chi^2=0.285$, $P=0.867$</td>
</tr>
<tr>
<td></td>
<td>EUV</td>
<td>15 (68.2%)</td>
<td>7 (31.8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUD</td>
<td>9 (69.2%)</td>
<td>4 (30.8%)</td>
<td></td>
</tr>
<tr>
<td>CagA2</td>
<td>NUD</td>
<td>48 (70.6%)</td>
<td>20 (29.4%)</td>
<td>$\chi^2=0.049$, $P=0.976$</td>
</tr>
<tr>
<td></td>
<td>EUV</td>
<td>15 (68.2%)</td>
<td>7 (31.8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUD</td>
<td>9 (69.2%)</td>
<td>4 (30.8%)</td>
<td></td>
</tr>
<tr>
<td>CagA3</td>
<td>NUD</td>
<td>2 (2.9%)</td>
<td>66 (97.1%)</td>
<td>$\chi^2=3.624$, $P=0.163$</td>
</tr>
<tr>
<td></td>
<td>EUV</td>
<td>2 (9.1%)</td>
<td>20 (90.9%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUD</td>
<td>2 (15.4%)</td>
<td>11 (84.6%)</td>
<td></td>
</tr>
<tr>
<td>CagE</td>
<td>NUD</td>
<td>52 (76.5%)</td>
<td>16 (23.5%)</td>
<td>$\chi^2=0.348$, $P=0.841$</td>
</tr>
<tr>
<td></td>
<td>EUV</td>
<td>17 (77.3%)</td>
<td>5 (22.7%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUD</td>
<td>9 (69.2%)</td>
<td>4 (30.8%)</td>
<td></td>
</tr>
<tr>
<td>CagM</td>
<td>NUD</td>
<td>48 (70.6%)</td>
<td>20 (29.4%)</td>
<td>$\chi^2=0.417$, $P=0.812$</td>
</tr>
<tr>
<td></td>
<td>EUV</td>
<td>17 (77.3%)</td>
<td>5 (22.7%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUD</td>
<td>9 (69.2%)</td>
<td>4 (30.8%)</td>
<td></td>
</tr>
<tr>
<td>tnpA</td>
<td>NUD</td>
<td>9 (13.2%)</td>
<td>59 (86.8%)</td>
<td>$\chi^2=3.391$, $P=0.184$</td>
</tr>
<tr>
<td></td>
<td>EUV</td>
<td>0 (0%)</td>
<td>22 (100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUD</td>
<td>1 (7.7%)</td>
<td>12 (92.3%)</td>
<td></td>
</tr>
<tr>
<td>CagT</td>
<td>NUD</td>
<td>44 (64.7%)</td>
<td>24 (35.3%)</td>
<td>$\chi^2=1.217$, $P=0.544$</td>
</tr>
<tr>
<td></td>
<td>EUV</td>
<td>17 (77.3%)</td>
<td>5 (22.7%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUD</td>
<td>9 (69.2%)</td>
<td>4 (30.8%)</td>
<td></td>
</tr>
<tr>
<td>Apcag</td>
<td>NUD</td>
<td>41 (60.3%)</td>
<td>27 (39.7%)</td>
<td>$\chi^2=1.119$, $P=0.571$</td>
</tr>
<tr>
<td></td>
<td>EUV</td>
<td>16 (72.7%)</td>
<td>6 (26.3%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUD</td>
<td>8 (61.5%)</td>
<td>5 (38.5%)</td>
<td></td>
</tr>
<tr>
<td>LEC</td>
<td>NUD</td>
<td>34 (50%)</td>
<td>34 (50%)</td>
<td>$\chi^2=2.243$, $P=0.326$</td>
</tr>
<tr>
<td></td>
<td>EUV</td>
<td>8 (36.4%)</td>
<td>14 (63.6%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUD</td>
<td>8 (61.5%)</td>
<td>5 (38.5%)</td>
<td></td>
</tr>
<tr>
<td>tnpB</td>
<td>NUD</td>
<td>6 (2.9%)</td>
<td>62 (91.2%)</td>
<td>$\chi^2=3.012$, $P=0.222$</td>
</tr>
<tr>
<td></td>
<td>EUV</td>
<td>0 (0%)</td>
<td>22 (100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUD</td>
<td>2 (15.4%)</td>
<td>11 (84.6%)</td>
<td></td>
</tr>
</tbody>
</table>

NUD- neulkusna dispepsija, **EUV**-erozije/ulkus želuca, **EUD**-erozije/ulkus duodenuma
5.9. DupA gen u Helicobacter pylori izolatima

5.9.1. Učestalost dupA gena

PCR metodom detektirano je 35 (34.0%) dupA gena u izolatima H. pylori. DupA gen proglasili smo pozitivnim uz jhp0917 pozitivan i jhp0918 pozitivan status (Slika 9, 10).

Slika 9. Agarozni gel s produktima PCR reakcije amplifikacije sa začetnicama za detekciju jhp0917 gena (307 bp)

Linija 1- DNA marker, linija 1 pozitivna kontrola (CCUG 47164) linija 2 negativna kontrola (CCUG 17874), linije 3-7, 10, 13, 14, 15-17,19-22, 26, 30-32, 34, 36, 37, 40 pozitivna amplifikacija jhp0917 (307 pb)
CCUG – Culture Collection University of Gothenburg
Slika 10. Agarozni gel s produktima PCR reakcije amplifikacije sa začetnicama za detekciju \textit{jhp0918} gena (276 bp)
Pedeset i šest (54%) od 103 izolata je negativno na oba gena (jhp0917/jhp0918). Ostatak 11 (10.7%) izolata je bilo jhp0917-pozitivano/jhp0918-negativano i 1 (1%) izolat je jhp0917-negativan/jhp0918-pozitivan (Tablica 14).

Tablica 14. Odnos gena jhp0917 i jhp0918

<table>
<thead>
<tr>
<th></th>
<th>jhp0918 neg.</th>
<th>jhp0918 poz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>jhp0917 neg.</td>
<td>56 (54.4%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>jhp0917 poz.</td>
<td>11 (10.7%)</td>
<td>35 (34%)</td>
</tr>
</tbody>
</table>

Iz Tablice 14 je vidljivo da je prisutnost jhp0917 i jhp0918 bila statistički značajno usko povezana (Spearman rang R=0.775, P<0.001)
5.9.2. Karakteristike bolesnika inficiranih s dupA pozitivnim ili dupA negativnim *H. pylori*

Tablica 15 prikazuje raspodjelu bolesnika prema spolu, dobi, simptomima i endoskopskoj dijagnozi u odnosu na prisutnost dupA gena.

Od 35 detektiranih dupA gena, 28 žena i 7 muškaraca ima dupA. Vezano uz simptome, najviše dupA pozitivnih bolesnika žalilo se na bol u epigastriju, njih 19/35.

Raspodjela dupA po endoskopski utvrđenim dijagnozama bila je slijedeća: 28/35 NUD i 7/35 EUV. Ni jedan bolesnik s EUD nije imao pozitivan dupA gen. Učestalost dupA gena je statistički značajno različita (p=0.016) obzirom na endoskopsku dijagnozu, najveća je u NUD (28/68), uspoređiva je u EUV (7/22) te je nema u EUD (0/13).

Iz Tablice 15 je vidljivo da statističkom obradom nije utvrđena statistički značajna razlika za prisustvo dupA gena prema spolu ($\chi^2=0.526$, P=0.468) ili prema subjektivnim simptomima (P>0.410 za sve simptome). Nije utvrđena niti statistički značajna razlika u dobi bolesnika prema prisustvu dupA gena (t=0.418, P=0.677).
Tablica 15. Karakteristike bolesnika u odnosu na prisutnost dupA gena.

<table>
<thead>
<tr>
<th></th>
<th>dupA poz</th>
<th>dupA neg</th>
<th>Statistika</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>35 (34%)</td>
<td>68 (66%)</td>
<td>χ²=0.526, P=0.468</td>
</tr>
<tr>
<td>Spol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muškarci</td>
<td>7 (28%)</td>
<td>18 (72%)</td>
<td></td>
</tr>
<tr>
<td>Žene</td>
<td>28 (35.9%)</td>
<td>50 (64.1%)</td>
<td></td>
</tr>
<tr>
<td>Dob (god.)</td>
<td>AS±SD</td>
<td></td>
<td>t=0.418, P=0.677</td>
</tr>
<tr>
<td>56.4±11.8</td>
<td>55.4±11.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simptomi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bol u epigastriju</td>
<td>19 (54.3%)</td>
<td>40 (58.8%)</td>
<td>χ²=0.194, P=0.659</td>
</tr>
<tr>
<td>napuhnutost</td>
<td>5 (14.3%)</td>
<td>7 (10.3%)</td>
<td>χ²=0.358, P=0.550</td>
</tr>
<tr>
<td>žgaravica</td>
<td>12 (34.3%)</td>
<td>29 (42.7%)</td>
<td>χ²=0.674, P=0.412</td>
</tr>
<tr>
<td>mučnina</td>
<td>5 (14.3%)</td>
<td>11 (16.2%)</td>
<td>χ²=0.063, P=0.802</td>
</tr>
<tr>
<td>Endoskopska dijagnoza</td>
<td>EUV 22 (21.4%)</td>
<td>EUV 22 (21.4%)</td>
<td>χ²=8.307, P=0.016</td>
</tr>
<tr>
<td></td>
<td>EUD 13 (12.6%)</td>
<td>EUD 13 (12.6%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUD 68 (66.0%)</td>
<td>NUD 68 (66.0%)</td>
<td></td>
</tr>
</tbody>
</table>

5.9.3. Povezanost *dupA* gena s patohistološkim promjenama želučane sluznice

Usporedbom rezultata dobivenih PCR metodom o prisustvu *dupA* gena i patohistološkog nalaza gastritisa sluznice korpusa i antruma (klasificiranog prema Sydneyskom sustavu) želuca dobiveni su rezultati prikazani u Tablici 16.

U antrumu želuca inflamacija je prisutna u svih 103 (100%) bolesnika, pri čemu je *dupA* najzastupljeniji u bolesnika s upalnim promjenama drugog stupnja, 24/35 *dupA* pozitivnih bolesnika (68.6%), slijede upalne promjene prvog stupnja s 10/35 *dupA* pozitivnih bolesnika (28.6%) i upalne promjene trećeg stupnja u manjem broju bolesnika, 1/35 (2.9%).

Aktivnost upale prisutna je u 68/103 (66%) bolesnika, pri čemu je *dupA* gen najzastupljeniji u bolesnika s prvim stupnjem aktivnosti upale, 16/35 (45.7%).

Atrofične promjene prisutne su u 2/35 (5.7%) bolesnika s *dupA* pozitivnim genom, a intestinalna metaplazija u 10/35 (28.6%) *dupA* pozitivnih bolesnika.

Nije utvrđena statistički značajna razlika u skoru intenziteta gastritisa u antrumu prema zastupljenosti *dupA* gena (p=0.434).

U korpusu želuca inflamacija je prisutna u svih 103 (100%) bolesnika, pri čemu je *dupA* najzastupljeniji u bolesnika s upalnim promjenama prvog stupnja, 23/35 (65.7%), slijedi *dupA* u promjenama drugog stupnja 12/35 (34.3%).

Aktivnost upale je prisutna u 64/103 bolesnika (62.2%), pri čemu je *dupA* najzastupljeniji u bolesnika s prvim stupnjem aktivnosti upale 15/35 (42.9%). Drugi stupanj aktivnosti imala su 4/35 (11.4%) bolesnika s pozitivnim *dupA*.

Atrofične promjene prvog stupnja prisutne su u 1/35 (2.9%) *dupA* bolesnika, a intestinalna metaplazija u 6/35 (17.1%) *dupA* pozitivnih bolesnika.

Nije utvrđena statistički značajna razlika u skoru intenziteta gastritisa u korpusu prema zastupljenosti *dupA* gena (p=0.084).

Nije utvrđena statistički značajna razlika u zastupljenosti *dupA* gena prema predominaciji gastritisa (p=0.691).
Tablica 16. Usporedba dupA gena s patohistološkim promjenama želučane sluznice

<table>
<thead>
<tr>
<th>Karakteristike</th>
<th>Skor</th>
<th>dupA poz</th>
<th>dupA neg</th>
<th>Statistika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktivnost</td>
<td>0</td>
<td>15 (42.9)</td>
<td>20 (29.4)</td>
<td>Z=1.396, P=0.163</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>16 (45.7)</td>
<td>34 (50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3 (8.6)</td>
<td>12 (17.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1 (2.9)</td>
<td>2 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Inflamacija</td>
<td>1</td>
<td>10 (28.6)</td>
<td>25 (36.8)</td>
<td>Z=0.651, P=0.515</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>24 (68.6)</td>
<td>41 (60.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1 (2.9)</td>
<td>2 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Inflamatori skor</td>
<td>AS±SD</td>
<td>2.4±1.0</td>
<td>2.6±1.1</td>
<td>t=0.786, P=0.434</td>
</tr>
<tr>
<td>Atrofija</td>
<td>0</td>
<td>33 (94.3)</td>
<td>63 (92.6)</td>
<td>Z=0.132, P=0.895</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2 (5.7)</td>
<td>5 (7.4)</td>
<td></td>
</tr>
<tr>
<td>Metaplazija*</td>
<td>0</td>
<td>25 (71.4)</td>
<td>53 (77.9)</td>
<td>Z=0.536, P=0.592</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10 (28.6)</td>
<td>15 (22.1)</td>
<td></td>
</tr>
<tr>
<td>H. pylori</td>
<td>0</td>
<td>4 (11.4)</td>
<td>7 (10.3)</td>
<td>Z=0.049, P=0.961</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11 (31.4)</td>
<td>22 (32.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11 (31.4)</td>
<td>23 (33.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9 (25.7)</td>
<td>16 (23.5)</td>
<td></td>
</tr>
<tr>
<td>Atrofija</td>
<td>0</td>
<td>16 (45.7)</td>
<td>23 (33.8)</td>
<td>Z=0.818, P=0.413</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15 (42.9)</td>
<td>38 (55.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4 (11.4)</td>
<td>7 (10.3)</td>
<td></td>
</tr>
<tr>
<td>Inflamacija</td>
<td>1</td>
<td>23 (65.7)</td>
<td>45 (67.1)</td>
<td>Z=1.751, P=0.080</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12 (34.3)</td>
<td>37 (33.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5 (14.7)</td>
<td>5 (7.4)</td>
<td></td>
</tr>
<tr>
<td>Inflamatori skor</td>
<td>AS±SD</td>
<td>2.0±1.0</td>
<td>2.4±1.0</td>
<td>t=1.744, P=0.084</td>
</tr>
<tr>
<td>Atrofija</td>
<td>0</td>
<td>34 (97.1)</td>
<td>64 (94.1)</td>
<td>Z=0.251, P=0.802</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1 (2.9)</td>
<td>3 (4.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1 (1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metaplazija*</td>
<td>0</td>
<td>29 (82.9)</td>
<td>60 (88.2)</td>
<td>Z=0.442, P=0.658</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6 (17.1)</td>
<td>8 (11.8)</td>
<td></td>
</tr>
<tr>
<td>H. pylori</td>
<td>0</td>
<td>2 (5.7)</td>
<td>2 (2.9)</td>
<td>Z=0.818, P=0.413</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>18 (51.4)</td>
<td>43 (63.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8 (22.9)</td>
<td>17 (25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7 (20)</td>
<td>6 (8.8)</td>
<td></td>
</tr>
<tr>
<td>Ukupni skor</td>
<td>AS±SD</td>
<td>3.7±1.6</td>
<td>3.9±1.5</td>
<td>t=0.569, P=0.571</td>
</tr>
<tr>
<td>Ukupni skor antrum+korpus</td>
<td>AS±SD</td>
<td>8.2±2.6</td>
<td>8.5±2.5</td>
<td>t=0.515, P=0.607</td>
</tr>
<tr>
<td>Predominacija</td>
<td>Antrum</td>
<td>6 (17.1)</td>
<td>13 (19.1)</td>
<td>χ²=0.740, P=0.691</td>
</tr>
<tr>
<td></td>
<td>Korpus</td>
<td>27 (77.1)</td>
<td>48 (70.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difuzno</td>
<td>2 (5.7)</td>
<td>7 (10.3)</td>
<td></td>
</tr>
</tbody>
</table>

AS-aritmetička sredina, SD-standardna devijacija, prema Sydneyskom sustavu klasifikacije: metaplazija nije utvrđena=0, metaplazija=1
5.9.4. Pojedinačna usporedba gena _jhp0917_ i _jhp0918_ s patohistološkim promjenama želučane sluznice

Pojedinačna učestalost _jhp0917_ gena utvrđena PCR metodom je 46 gena, a _jhp0918_ 36 gena. Prema distribuciji u bolesnika po tipu gastritisa, i _jhp0917_ i _jhp0918_ najzastupljeniji su u difuznom gastritisu 37/46 (80.0%), 28/36 (77.8%).

Tablica 17. Usporedba _jhp0917_ i _jhp0918_ gena s patohistološkim promjenama želučane sluznice

<table>
<thead>
<tr>
<th>Karakteristike</th>
<th>Gen</th>
<th>Statistika</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jhp0917 poz</td>
<td>jhp0917 neg</td>
</tr>
<tr>
<td>Antrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflamatori skor</td>
<td>AS±SD</td>
<td>t=0.373, P=0.710</td>
</tr>
<tr>
<td>jhp0918 poz</td>
<td>jhp0918 neg</td>
<td></td>
</tr>
<tr>
<td>Inflamatori skor</td>
<td>AS±SD</td>
<td>t=0.692, P=0.491</td>
</tr>
<tr>
<td>jhp0917 poz</td>
<td>jhp0918 neg</td>
<td></td>
</tr>
<tr>
<td>Inflamatori skor</td>
<td>AS±SD</td>
<td>t=0.345, P=0.731</td>
</tr>
<tr>
<td>jhp0918 poz</td>
<td>jhp0918 neg</td>
<td></td>
</tr>
<tr>
<td>Korpus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflamatori skor</td>
<td>AS±SD</td>
<td>t=1.565, P=0.121</td>
</tr>
<tr>
<td>jhp0917 poz</td>
<td>jhp0918 neg</td>
<td></td>
</tr>
<tr>
<td>Dominacija</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difuzno</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korpus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jhp0917 poz</td>
<td>jhp0918 neg</td>
<td></td>
</tr>
<tr>
<td>jhp0918 poz</td>
<td>jhp0918 neg</td>
<td></td>
</tr>
<tr>
<td>Dominacija</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difuzno</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korpus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AS-aritmetička sredina, SD-standardna devijacija

Nije utvrđena statistički značajna razlika u skoru intenziteta gastritisa u antrumu prema zastupljenosti _jhp0917_ gena (t=0.373, P=0.710). Nije utvrđena statistički značajna razlika u skoru intenziteta gastritisa u korpusu prema zastupljenosti _jhp0917_ gena (t=0.345, P=0.731). Nije utvrđena statistički značajna razlika u zastupljenosti _jhp0917_ prema predominaciji gastritisa (\(\chi^2=2.966, P=0.227\)).
Nije utvrđena statistički značajna razlika u skoru intenziteta gastritisa u antrumu prema zastupljenosti $jhp0918$ gena ($t=0.692$, $P=0.491$). Nije utvrđena statistički značajna razlika u skoru intenziteta gastritisa u korpusu prema zastupljenosti $jhp0918$ gena ($t=1.565$, $P=0.121$). Nije utvrđena statistički značajna razlika u zastupljenosti $jhp0918$ prema predominaciji gastritisa ($\chi^2=0.924$, $P=0.630$).
5.10. Testiranje osjetljivosti na antimikrobna sredstva

Testiranje antimikrobne osjetljivosti 103 *Helicobacter pylori* izolata metodom određivanja minimalne inhibitorne koncentracije (MIK) E-testom pokazalo je rezistenciju od 74,8% na azitromicin (AZT) i klaritromicin (CLR), 80,6% rezistenciju na metronidazole (MTZ) te 14,6% rezistenciju na levofloksacin (LEV). Rezistencija na amoksicilin nije zabilježena (Tablica 18 i Graf 9).

Raspon MIK-ova za azitromicin i klaritromicin kretao se od 0,1215 µg/mL – 64 µg/mL. Više od polovice izolata (63,1%, 56,3%) imalo je MIK na azitromicin i klaritromicin 64 µg/mL. Tu vrijednost MIK-a dosegulo je 43,7% izolata testiranih na metronidazol i 10,7% izolata testiranih na levofloksacin. Testirani izolati pokazuju osjetljivost na klaritromicin uz načešći MIK od 0,125 µg/mL (18,4%). Testirani izolati pokazuju sličan obrazac i na azitromicin uz najčešći MIK od 0,25 µg/mL (16,5%), najviše testiranih izolata bilo je osjetljivo na amoksicilin uz MIK 0,125 µg/ml (62,1%). Na lefofloksacin najviše osjetljivih izolata bilo je uz MIK 2 µg/ml (85,4%). (Tablica 19, Graf 10).

Tablica 18. Antimikrobna osjetljivost H. pylori izolata (N=103)

<table>
<thead>
<tr>
<th>Antibiotici</th>
<th>AZT</th>
<th>CLR</th>
<th>MTZ</th>
<th>AMX</th>
<th>LEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezistentni</td>
<td>77 (74,8%)</td>
<td>77 (74,8%)</td>
<td>83 (80,6%)</td>
<td>0 (0%)</td>
<td>15 (14,6%)</td>
</tr>
<tr>
<td>Senzitivni</td>
<td>26 (25,2%)</td>
<td>26 (25,2%)</td>
<td>20 (19,4%)</td>
<td>103 (100%)</td>
<td>88 (85,4%)</td>
</tr>
</tbody>
</table>

AZT-azitromicin, CLR-klaritromicin, MTZ- metronidazol, AMX- amoksicilin, LEV- levofloksacin
Graf 9. Distribucija antimikrobne osjetljivosti *H. pylori* izolata (N=103)

AZT-azitromicin, CLR-klaritromicin, MTZ- metronidazol, AMX- amoksicilin, LEV-levofloksacin
Tablica 19. Raspon vrijednosti MIK-ova testiranih antibiotika

<table>
<thead>
<tr>
<th>MIK (μg/ml)</th>
<th>Antibiotik</th>
<th>AZT</th>
<th>CLR</th>
<th>MTZ</th>
<th>AMX</th>
<th>LEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1215</td>
<td>6 (5.8%)</td>
<td>5 (4.9%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>1 (1.0%)</td>
<td>19 (18.4%)</td>
<td>2 (1.9%)</td>
<td>64 (62.1%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>17 (16.5%)</td>
<td>2 (1.9%)</td>
<td>9 (8.7%)</td>
<td>37 (35.9%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>2 (1.9%)</td>
<td>2 (1.9%)</td>
<td>4 (3.9%)</td>
<td>2 (1.9%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 (1.9%)</td>
<td>4 (3.9%)</td>
<td>2 (1.9%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5 (4.9%)</td>
<td>1 (1.0%)</td>
<td>1 (1.0%)</td>
<td>0 (0%)</td>
<td>88 (85.4%)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2 (1.9%)</td>
<td>2 (1.9%)</td>
<td>1 (1.0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1 (1.0%)</td>
<td>4 (3.9%)</td>
<td>21 (20.4%)</td>
<td>0 (0%)</td>
<td>2 (1.9%)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2 (1.9%)</td>
<td>6 (5.8%)</td>
<td>18 (17.5%)</td>
<td>0 (0%)</td>
<td>2 (1.9%)</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>65 (63.1%)</td>
<td>58 (56.3%)</td>
<td>45 (43.7%)</td>
<td>0 (0%)</td>
<td>11 (10.7%)</td>
<td></td>
</tr>
</tbody>
</table>

MIK – minimalna inhibitorna koncentracija, AZT-azitromicin, CLR-klaritromicin, MTZ- metronidazol, AMX- amoksicilin, LEV-levofloksacin

![Diagram](image)

Graf 10. Raspon vrijednosti MIK-ova testiranih antibiotika

MIK-minimalna inhibitorna koncentracija, AZT-azitromicin, CLR-klaritromicin, MTZ- metronidazol, AMX-amoksicilin, LEV-levofloksacin
Tablica 20. Učestalost rezistencije *H. pylori* izolata po broju antibiotika

<table>
<thead>
<tr>
<th>Broj antibiotika na koje izolati pokazuju rezistenciju</th>
<th>Broj (%) izolata</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5 (4.9%)</td>
</tr>
<tr>
<td>1</td>
<td>17 (16.5%)</td>
</tr>
<tr>
<td>2</td>
<td>16 (15.5%)</td>
</tr>
<tr>
<td>3</td>
<td>57 (55.3%)</td>
</tr>
<tr>
<td>4</td>
<td>8 (7.8%)</td>
</tr>
</tbody>
</table>

Graf 11. Učestalost rezistencije *H. pylori* izolata po broju antibiotika
Tablica 21. Učestalost rezistencije *H. pylori* izolata po vrsti antibiotika

<table>
<thead>
<tr>
<th>Rezistencija na:</th>
<th>Broj (%) izolata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osjetljivi</td>
<td>5 (4.9%)</td>
</tr>
<tr>
<td>MTZ</td>
<td>17 (16.5%)</td>
</tr>
<tr>
<td>CLR AZT</td>
<td>12 (11.7%)</td>
</tr>
<tr>
<td>MTZ LEV</td>
<td>4 (3.9%)</td>
</tr>
<tr>
<td>CLR AZT MTZ</td>
<td>54 (52.4%)</td>
</tr>
<tr>
<td>CLR AZT LEV</td>
<td>3 (2.9%)</td>
</tr>
<tr>
<td>CLR AZT MTZ LEV</td>
<td>8 (7.8%)</td>
</tr>
</tbody>
</table>

AZT-azitromicin, CLR-klaritromicin, MTZ-metronidazol, AMX-amoksicilin, LEV-levofloksacin

Graf 12. Učestalost rezistencije *H. pylori* izolata po vrsti antibiotika

AZT-azitromicin, CLR-klaritromicin, MTZ-metronidazol, AMX-amoksicilin, LEV-levofloksacin

Nije utvrđena statistički značajna razlika za prosječni broj antibiotika na koje izolati pokazuju rezistenciju između muškaraca i žena (2.5±0.9 prema 2.4±1.1, t=0.413, P=0.680), a niti vezano uz endoskopsku dijagnozu (NUD 2.5±1.0, EUV 2.5±1.1, EUD 2.2±1.1, F=0.624, P=0.543).
5.11. Povezanost gena virulencije cagPAI i dupA s antimikrobnom osjetljivošću

Odnos rezistencije na testirane antibiotike i pojedinačnih cagPAI gena i dupA gena prikazan je u Tablicama 22, 23, 24, 25. Rezistencija na amoksicilin nije zabilježena.

Tablica 22. Odnos rezistencije azitromicina i gena cagPAI i dupA gena

<table>
<thead>
<tr>
<th></th>
<th>Cag A1</th>
<th>Cag A2</th>
<th>Cag A3</th>
<th>Cag E</th>
<th>CagM</th>
<th>tnpA</th>
<th>cagT</th>
<th>Apcag</th>
<th>LEC</th>
<th>tnpB</th>
<th>dupA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald hi kvadrat</td>
<td>0.009</td>
<td>0.043</td>
<td>0.432</td>
<td>2.056</td>
<td>0.056</td>
<td>0.008</td>
<td>0.565</td>
<td>0.0314</td>
<td>1.040</td>
<td>0.009</td>
<td>0.887</td>
</tr>
<tr>
<td>P-vrijednost</td>
<td>0.925</td>
<td>0.8357</td>
<td>0.511</td>
<td>0.152</td>
<td>0.813</td>
<td>0.927</td>
<td>0.452</td>
<td>0.859</td>
<td>0.308</td>
<td>0.926</td>
<td>0.346</td>
</tr>
<tr>
<td>OR (za jediničnu promjenu)</td>
<td>0.899</td>
<td>1.293</td>
<td>2.189</td>
<td>0.179</td>
<td>1.527</td>
<td>0.915</td>
<td>1.942</td>
<td>1.145</td>
<td>0.573</td>
<td>1.108</td>
<td>1.667</td>
</tr>
<tr>
<td>-95% CI</td>
<td>0.097</td>
<td>0.110</td>
<td>0.205</td>
<td>0.0167</td>
<td>0.044</td>
<td>0.132</td>
<td>0.336</td>
<td>0.250</td>
<td>0.193</td>
<td>0.125</td>
<td>0.568</td>
</tr>
</tbody>
</table>

Rezistencija na azitromicin nije bila statistički značajno povezana s prisutnošću bilo kojeg od cagPAI gena ili dupA gena (P>0.150 za sve gene).

Tablica 23. Odnos rezistencije klaritromicina i gena cagPAI i dupA gena

<table>
<thead>
<tr>
<th></th>
<th>Cag A1</th>
<th>Cag A2</th>
<th>Cag A3</th>
<th>Cag E</th>
<th>CagM</th>
<th>tnpA</th>
<th>cagT</th>
<th>Apcag</th>
<th>LEC</th>
<th>tnpB</th>
<th>dupA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald hi kvadrat</td>
<td>0.009</td>
<td>0.043</td>
<td>0.432</td>
<td>2.056</td>
<td>0.056</td>
<td>0.008</td>
<td>0.565</td>
<td>0.0314</td>
<td>1.040</td>
<td>0.009</td>
<td>0.887</td>
</tr>
<tr>
<td>P-vrijednost</td>
<td>0.925</td>
<td>0.8357</td>
<td>0.511</td>
<td>0.152</td>
<td>0.813</td>
<td>0.927</td>
<td>0.452</td>
<td>0.859</td>
<td>0.308</td>
<td>0.926</td>
<td>0.346</td>
</tr>
<tr>
<td>OR (za jediničnu promjenu)</td>
<td>0.899</td>
<td>1.293</td>
<td>2.189</td>
<td>0.179</td>
<td>1.527</td>
<td>0.915</td>
<td>1.942</td>
<td>1.145</td>
<td>0.573</td>
<td>1.108</td>
<td>1.667</td>
</tr>
<tr>
<td>-95% CI</td>
<td>0.097</td>
<td>0.110</td>
<td>0.205</td>
<td>0.0167</td>
<td>0.044</td>
<td>0.132</td>
<td>0.336</td>
<td>0.250</td>
<td>0.193</td>
<td>0.125</td>
<td>0.568</td>
</tr>
</tbody>
</table>

Rezistencija na klaritromicin nije bila statistički značajno povezana s prisutnošću bilo kojeg od cagPAI gena ili dupA gena (P>0.150 za sve testirane gene).
Tablica 24. Odnos rezistencije metronidazola i gena cagPAI i dupA gena

<table>
<thead>
<tr>
<th></th>
<th>Cag A1</th>
<th>Cag A2</th>
<th>Cag A3</th>
<th>Cag E</th>
<th>CagM</th>
<th>trnP A</th>
<th>cagT</th>
<th>Apcag</th>
<th>LEC</th>
<th>trnP B</th>
<th>dupA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald hi-kvadrat</td>
<td>0.001</td>
<td>0.012</td>
<td>0.036</td>
<td>1.067</td>
<td>0.000</td>
<td>0.635</td>
<td>2.255</td>
<td>2.117</td>
<td>0.050</td>
<td>0.198</td>
<td>6.260</td>
</tr>
<tr>
<td>P-vrijednost</td>
<td>0.974</td>
<td>0.911</td>
<td>0.848</td>
<td>0.301</td>
<td>0.983</td>
<td>0.425</td>
<td>0.133</td>
<td>0.145</td>
<td>0.822</td>
<td>0.655</td>
<td>0.012</td>
</tr>
<tr>
<td>OR (za jediničnu promjenu)</td>
<td>1.045</td>
<td>0.858</td>
<td>0.793</td>
<td>3.760</td>
<td>0.952</td>
<td>0.423</td>
<td>4.593</td>
<td>0.093</td>
<td>0.864</td>
<td>1.747</td>
<td>0.246</td>
</tr>
<tr>
<td>-95% CI</td>
<td>0.068</td>
<td>0.054</td>
<td>0.071</td>
<td>0.294</td>
<td>0.008</td>
<td>0.049</td>
<td>0.611</td>
<td>0.003</td>
<td>0.238</td>
<td>0.145</td>
<td>0.080</td>
</tr>
<tr>
<td>+95% CI</td>
<td>15.881</td>
<td>13.407</td>
<td>8.757</td>
<td>48.031</td>
<td>109.315</td>
<td>3.599</td>
<td>34.508</td>
<td>2.377</td>
<td>3.134</td>
<td>21.000</td>
<td>0.748</td>
</tr>
</tbody>
</table>

Rezistencija na metronidazol bila je statistički značajno povezana s izostankom dupA gena (OR=0.246, 95% CI 0.081-0.749, P=0.012), ali ne i prisutnošću cagPAI gena (p>0.130 za sve cagPAI gene). Pozitivan dupA genotip statistički značajno smanjuje šansu za rezistenciju izolata H. pylori na metronidazol za 75.4%.

Tablica 25. Odnos rezistencije levofloksacina i gena cagPAI i dupA gena

<table>
<thead>
<tr>
<th></th>
<th>Cag A1</th>
<th>Cag A2</th>
<th>Cag A3</th>
<th>Cag E</th>
<th>CagM</th>
<th>trnP A</th>
<th>cagT</th>
<th>Apcag</th>
<th>LEC</th>
<th>trnP B</th>
<th>dupA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald hi-kvadrat</td>
<td>1.369</td>
<td>0.068</td>
<td>1.351</td>
<td>0.130</td>
<td>0.000</td>
<td>0.000</td>
<td>1.310</td>
<td>2.874</td>
<td>0.670</td>
<td>0.418</td>
<td>0.120</td>
</tr>
<tr>
<td>P-vrijednost</td>
<td>0.241</td>
<td>0.794</td>
<td>0.245</td>
<td>0.717</td>
<td>0.993</td>
<td>0.983</td>
<td>0.252</td>
<td>0.090</td>
<td>0.412</td>
<td>0.517</td>
<td>0.728</td>
</tr>
<tr>
<td>OR (za jediničnu promjenu)</td>
<td>9.280</td>
<td>1.681</td>
<td>3.435</td>
<td>0.572</td>
<td>1.022</td>
<td>1.025</td>
<td>0.296</td>
<td>0.238</td>
<td>1.796</td>
<td>2.316</td>
<td>1.253</td>
</tr>
<tr>
<td>-95% CI</td>
<td>0.211</td>
<td>0.032</td>
<td>0.416</td>
<td>0.026</td>
<td>0.004</td>
<td>0.082</td>
<td>0.035</td>
<td>0.044</td>
<td>0.433</td>
<td>0.175</td>
<td>0.344</td>
</tr>
</tbody>
</table>

Rezistencija na levofloksacin nije bila statistički značajno povezana s prisutnošću bilo kojeg od cagPAI gena ili dupA gena (P>0.090 za sve testirane gene).
5.12. Povezanost cagPAI statusa i dupA gena

Kod *H. pylori* izolata s parcijalno izbrisanim cagPAI (n=87) detektiran je 31/35 (88.5%) *dupA* gen, a 4/35 (11.5%) *dupA* vezuju se uz *H. pylori* izolate koji su imali izbrisani cagPAI (n=16), Tablica 26.

Tablica 26. Odnos cagPAI i dupA gena

<table>
<thead>
<tr>
<th></th>
<th>Izbrisani cagPAI</th>
<th>Parcijalno izbrisani cagPAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>dupA neg.</td>
<td>12 (11.7%)</td>
<td>56 (54.4%)</td>
</tr>
<tr>
<td>dupA poz.</td>
<td>4 (3.9%)</td>
<td>31 (30.1%)</td>
</tr>
</tbody>
</table>

Nije utvrđena statistički značajna povezanost *dupA* genotipa s tipom cagPAI (Spearman rang R=0.081, P=0.414).

Predmet ovog istraživanja bilo je određivanje cjelovitosti cagPAI otoka pojedinačnom detekcijom 10 gena PCR metodom i usporedba s patohistološkim promjenama želučane sluznice. U našoj studiji nismo našli ni jedan intaktni cagPAI, parcijalno izbrisanih bilo je 84,5%, a kompletno izbrisanih 15,5%. Slično, studija iz Meksika analizirala je 11 gena, našli su 90% intaktnih, 4% parcijalno izbrisanih i 6% kompletno izbrisanih (183).

Treba naglasiti da postoji neusklađenost među studijama u analizi broja gena cagPAI regije i definiranju intaktnog, izbrisanog i parcijalno izbrisanog cagPAI. Najčešće se radi o analizi limitiranog broja gena. Tako su Salih i sur. u svojoj studiji na temelju analize 4 gena cagPAI regije izvijestili o 42,1% intaktnih, 39,5% parcijalno izbrisanih i 18,4% kompletno izbrisanih cagPAI i povezanosti intaktnog cagPAI s duodenalnim ulkusom (184). Baghaei i sur. su analizom samo 3 gena izvijestili o 17% intaktnih cagPAI, 62% parcijalno izbrisanih i 20% izbrisanih cagPAI u iranskoj populaciji (185). Nygen i sur. su u vietnamskoj populaciji analizom 30 gena na istom broju uzoraka i sličnim endoskopskim dijagnozama kao u našoj studiji ustanovili 88% intaktnih cagPAI i 12% parcijalno izbrisanih cagPAI (186). U studiji Kausera i sur. genotipizirano je osam gena H. pylori iz osam različitih regija svijeta. Najveća
proporcija intaktnog \textit{cagPAI} zabilježena je u izolatima iz Japana (57.1%), što je u suglasju s izvješćima o povećanoj incidenciji karcinoma želuca u tom dijelu svijeta, 18.6% u Peru, 12% u Indiji, 15.8% uIrskoj, 1.3% u Engleskoj. Nijedan izolat iz Costa Rice nije imao intakti \textit{cagPAI} (187).

Na temelju dosadašnjih publiciranih istraživanja vidljivo je da učestalost intaktnog \textit{cagPAI} varira u izolatima iz različitih geografskih regija.

Rezultati naše studije nisu pokazali statističku povezanost raspodije izbrisanog i parcijalno izbrisanog \textit{cagPAI} s endoskopskom dijagnozom niti s patohistološkim promjenama. U prethodnim istraživanjima je dokazano da \textit{cagPAI} nije jedini čimbenik virulencije i da je teško predvidjeti tijek bolesti na temelju integriteta \textit{cagPAI} segmenta, osim u slučajevima kada se analizira veliki broj sojeva s precizno definiranim kliničko-epidemiološkim i patološkim značajkama.

Treba imati na umu da su naši rezultati odraz specifično odabrane skupine bolesnika s prevladavajućom neulkusnom dispepsijom koji su višestruko neuspešno liječeni različitim kombinacijama antibiotika. Teško bi bilo ocijeniti jesu li ovi rezultati stvarni odraz stanja u našoj geografskoj regiji, kao i kakvi bi rezultati bili u \textit{H. pylori} izolatima bolesnika s različitim težim stupnjevima gastroduodenalne bolesti. Do sada u Hrvatskoj nije rađena niti jedna druga studija genotipiziranja \textit{cagPAI} gena da bismo mogli usporediti rezultate. Svakako bi idući poželjni korak u budućnosti bilo genotipiziranje \textit{H. pylori} izolata bolesnika prije liječenja i s težim želučanim bolestima kao što su ulkusi i karcinomi želuca.

I u istraživanju Maeda i sur. iz Japana parcijalno izbrisani \textit{cagPAI} izoliraju se samo kod bolesnika s neulkusnom dispepsijom, za razliku intaktnih \textit{cagPAI} koji se izoliraju u bolesnika s karcinomom želuca (173).

\textit{CagA} smatra se markerom \textit{cagPAI} regije (188). Pozitivitet \textit{cagA} ovisi o regiji \textit{cagA} gena koju se istražuje. U našoj studiji analizirali smo tri različita segmenta \textit{cagA} gena: \textit{cagA1} segment blizu promotor regije, srednji segment \textit{cagA2} i desni kraj \textit{cagA3}. U većini studija analiziran je samo jedan segment \textit{cagA} gena. Dok je u našoj studiji učestalost \textit{cagA1} (71.8%) i \textit{cagA2} (69.9%)
približno ista, učestalost cagA3 (5.8%) bila je niska. Čest izostanak cagA3 u kontrolnih sojeva u studiji Mattar i sur. iz 2007. u odnosu na segment cagA1 i cagA2 povezuje se s manjom patogenosti (128). Prevalencija cagA pozitivnih sojeva razlikuje se između pojedinih zemalja: u istočno Azijskim zemljama je 90% (189), u Ekvadoru 46%, Panami 20% (190), Kolumbiji 64%, Japanu 100% (191). Bugarska ima prevalenciju 84.9% (192), Iran 62% (193), Tursku 49% (194), Portugal 31.8% (116), Sloveniju 61.2% (u dječjoj populaciji) (195). U ranije rađenom istraživanju u Hrvatskoj (Filipec-Kanižaj i sur.), u kojoj su testirani serumi bolesnika na prisutnost serumskog antitijela na bakterijski antigen (CagA – cytotoxin-associated antigen), 91.3% bolesnika bilo je pozitivno (196). U našoj studiji cagA nije bio statistički povezan s kliničkom dijagnozom, kao ni u studiji Straus i sur. gdje je učestalost cagA bila 81%, za razliku od studije Marie MAM i sur. gdje se prisutnost cagA (62%) statistički značajno povezuje s gastritisom i peptičkim ulkusom (197,198). CagA u našoj studiji bio je povezan s većim stupnjem inflamacije želučane sluznice, poglavito antruma (p=0.001). U radu Filipec-Kanižaj p120 (cagA) seropozitivitet bio je značajno prisutniji kod bolesnika s višim stupnjem aktivnosti u antrumu što se slaže s našim rezultatima (196). Ti rezultati su konzistentni i s nekim drugim studijama u kojima cagA dokazano potiče neutrofilnu akumulaciju mjerenu kao inflamatorni skor, odnosno prema nekim studijama inducira produkciju interleukina IL-8 (184). Takve rezultate potvrđuju Hosseini i sur. u preglednom članku u kojem analiziraju većinu iranskih studija (199); Dubiri i sur. nisu našli povezanost cagA i cagE s kliničkim ishodom u iranskih bolesnika (200). U našoj studiji cagA2 se povezuje i s većom gustoćom H. pylori (p=0.001). Tu povezanost potvrdili su i Salimzadeh i sur. (201), Belda i sur. (202),Atherton i sur. (203). Suprotno tome Vaziri i sur. nisu našli značajnu povezanost između cagA pozitiviteta i H. pylori gustoće, neutrofilne aktivnosti, limfoidne agregacije u lamini propriji i glandularne atrofije, ali su našli značajnu povezanost s teškim aktivnim kroničnim gastritisom (193). Zastupljenost cagE u našoj studiji je bila veća od cagA (75.7% vs 71.8%). To ide u prilog istraživanjima u kojima je dokazano da je cagE bolji marker cag1 regije nego cagA (128,204). Mi nismo našli
povezanost cagE ni s endoskopskom dijagnozom, ni s patohistološkim promjenama, što se poklapa s rezultatima studije iz Portugala gdje je cagE bio zastupljeniji od cagA (116). I u studiji Kauera i sur. cagE i cagT je nađen značajno češće u odnosu na cagA (82% vs 72.8%) (187). Modena i sur. također nisu našli povezanost cagE (88,9%) i kliničkog ishoda (205), za razliku od istraživanja u kojima je nađena veća učestalost cagE gena u težim gastrointestinalnim bolestima kao što su peptički ulkusi i želučani karcinom u odnosu na gastritis (206). CagT kao marker cagII regije nađen je u 68% naših izolata i uočena je povezanost sa značajno manjom učestalošću atrofije antruma, a bez povezanosti s kliničkom dijagnozom. Baghaei i sur. u svojoj studiji također nisu našli povezanost niti s kliničkom dijagnozom, niti s pathohistološkim karakteristikama služnice (185). U studiji Mattar i sur. 98% izolata bolesnika s peptičkom ulkusnom bolesti sadržavalo je cagT gen (128), dok su izolati s izbrisanim cagT u japanskoj populaciji bili češći u bolesnika s kroničnim gastritisom u odnosu na ulkusnu bolest ili želučani karcinom (102). Fischer i sur. u svojoj studiji navode da H. pylori sojevi kojima nedostaje cagT gen imaju nefunkcionalan T4SS i nesposobni su translocirati cagA protein u stanicu domaćina (207). U studiji iz Engleske, većina sojeva ulkusnih bolesnika sadržavala je cagT i cagE gene (208). U našoj studiji CagM s učestalošću od 71.8% povezivao se s značajno većom gustoćom H. pylori u korpusu i povećanim ukupnim skorom za korpus, a bez povezanosti s endoskopskom dijagnozom. Uz cagE, cagM je također neophodan za induciranje produkcije interleukina IL-8. U studiji Mattar i sur. povezivan je s osam puta većim rizikom za razvoj ulkusne bolesti (128). CagA promotor regija (Apcag) u našoj studiji bila je povezana s višim stupnjem aktivne inflamacije, ali bez povezanosti s endoskopskom dijagnozom. Mattar i sur. visoku učestalost Apcag u svojoj studiji povezuju i s višim stupnjem gastritisa i s ulkusnom bolešću (128). LEC (lijevi kraj cagII) nađen je u 48,5% naših izolata i bio je povezan s značajno manjom učestalošću atrofije antruma, što je konzistentno sa studijom Kauera i sur. gdje je LEC bio zastupljeniji u bolesnika s benignim promjenama (187).
U istraživanju iz 2007. Mattar i sur. našli su značajnu povezanost želučanog ulkusa s prisutnošću *tnpA* (63%) i *tnpB* (13.5%) gena u izolatima (128), a novija i manja studija istog autora iz 2010. potvrdila je vezu *tnpA* i želučanog karcinoma (131). U prilog tome ide i iranska studija provedena među bolesnicima s želučanim karcinomom i gastritisom, koja je našla povezanost između *tnpA* i želučanog karcinoma (47.5% udio *tnpA*), ali bez povezanosti s patohistološkim karakteristikama (209). I studija iz Perua je potvrdila visok udio *tnpA* gena (46%) u populaciji s karcinomom želuca i njihovu povezanost. U našoj studiji udio *tnpA* i *tnpB* gena bio je nizak i bez povezanosti sa endoskopskom dijagnozom ili patohistološkim nalazom. To se može objasniti time što u našoj skupini nije bilo bolesnika s karcinomom želuca.

Iako je u više istraživanja nađena značajna povezanost karcinoma želuca i *tnpA* gena, da bi se taj gen uvrstio u biomarker za karcinom želuca baš kao i *cagA* gen potrebna su dalja istraživanja na većem uzorku za potvrdu tih rezultata.

Sukladno originalnoj studiji Lu i sur. iz 2005. (133) i naša studija je potvrdila međusobnu prisutnost sekvenci *jhp0917* i *jhp0918*, čineći kompletni/aktivni *dupA* gen u 34.0% izolata, smješten unutar plastične regije *H. pylori*.

U Hrvatskoj je to prva i jedina studija, pa nije moguća usporedba rezultata unutar naše zemlje. Slične rezultate (33.33%) našli su i Zhang i sur. u Kini (210), Soud i sur. u Iranu (211). U našoj studiji 10.7% izolata *H. pylori* nije posjedovalo *jhp0918* uz pozitivni *jhp0917*. Taj rezultat je sličan rezultatu Archachi i sur. koji su našli 11% *H. pylori* izolata negativnih na *jhp0918*, uz 37.5% pozitivnih *dupA* u bolesnika s DU (134). Manje vrijednosti zabilježila je iranska studija 6% (211) i studija Pacheco i sur. 2.5% (130). *DupA* bez *jhp0918* smatra se nefunkcionalnim. Ta činjenica proizlazi iz istraživanja koja su potvrdila da jedino intaktni *dupA* sojevi, dakle oni koji sadržavaju i *jhp0917* i *jhp0918*, mogu formirati tip IV sekrecijski sistem (T4SS) i biti uključeni u patogenezu gastroduodenalne bolesti (212).

Postoje različite geografske varijacije u prevalenciji *dupA* i njegovoj povezanosti ili nepovezanosti sa duodenalnom ulkusnom bolesti (DU).
Rezultati različitih studija o povezanosti dupA i kliničkog ishoda su kontroverzni. Isto tako, povezanost dupA i DU u samo nekim populacijama može biti odraz razlike u definiciji i dijagnostici DU ili u upotrebi lijekova koji uzrokuju ili liječe DU. Razlike mogu biti uvjetovane i različitim PCR tehnikama u detekciji intaktnog dupA. Razlike mogu biti prisutne i unutar etničkih i starosnih grupa stanovnika unutar iste zemlje. U prilog toj tvrdnji idu različiti rezultati dviju studija iz Brazila: Pereira i sur. su detektirali dupA gen u 23.4% odraslih i 18.1% djece (213), a Gomes i sur. u odraslih 89.46%, a u dječjoj populaciji 100% (214). U našoj studiji radilo se o odraslim bolesnicima u kojih nije nađena statistički značajna razlika u dobi i prisustvu dupA. Prevalencija dupA je značajno veća u izolata bolesnika s DU, a manja u bolesnika s karcinomom želuca (Japan, Koreja, Kolumbija) (42% vs 9% u prosjeku) (133). U preglednim člancima navode se podaci o prevalenciji dupA širom svijeta od oko 44.8% i razlikuju se u pojedinim nacionalnim i etničkim grupama stanovništva. Povezanost dupA i razvoja bolesti uglavnom je proučavana u većini azijskih zemalja. Meta analiza iz 2010. koja je uključila 17 studija sa 2466 bolesnika potvrdila je povezanost dupA i kliničkog ishoda i pokazala prevalenciju dupA od 31.0% u azijskim zemljama i 64.1% u zapadnim zemljama. Infekcija s dupA pozitivnim H. pylori povećava rizik za DU u azijskim zemljama, ali ne i u zapadnim zemljama (215). Glavno ograničenje naše studije je u mali broj bolesnika s duodenalnom ulcerom bolešću (12.6%) i potpuni izostanak bolesnika s karcinomom želuca, što narušava definitivni zaključak o dupA kao markeru duodenalnog ulkaza i njegovoj protektivnoj ulozi za razvoj atrofije, intestinalne metaplazije i želučanog karcinoma. Gotovo isti broj uzoraka H. pylori i slične grupe bolesnika kao u našoj studiji istraživali su Osman i sur. u malezijskoj populaciji. Slično kao i u našem istraživanju detektirali su prevalenciju od 22.9% dupA gena, najčešće učestalosti u NUD grupi i bez statističke povezanosti sa kliničkim ishodom (216). Studija Schmidta i sur. iz Švedske nije našla razliku u prevalenciji dupA u bolesnika s NUD, DU i karcinomom želuca, a ni povećanu produkciju IL-8 in vitro kod dupA pozitivnih izolata (139).
Originalno istraživanje podupire hipotezu o povezanosti dupA i povećane produkcije IL-8 u antrumu želučane sluznice, a time i razvoju antrum predominantnog gastritis (133).

Antimikrobna rezistencija (otpornost) H. pylori sojeva definira se kao primarna (antibiotik je nedjelotvoran na bakteriju i prije pokušaja liječenja) i sekundarna ili stečena (kad osjetljivi soj stekne rezistenciju tijekom liječenja) rezistencija. Glavni uzrok tog fenomena su točkaste mutacije u DNA H. pylori (218).

Analiza antimikrobne aktivnosti in vivo je mnogo kompleksnija nego one in vitro. Aktivnost ne ovisi samo o odnosu između antibiotika i bakterije, nego postoji i treći čimbenik – domaćin. Različiti čimbenici iz okoliša utječu na mikroorganizam koji može biti lociran u različitim tkivima i tjelesnim tekućinama, a koji se razlikuje od uvjeta na umjetnim podlogama. Odgovor mikrobiške populacije na antibiotike u organizmu čovjeka nije tako uniformiran kao kod testiranja in vitro.

U našoj studiji testiranjem antimikrobne osjetljivosti 103 H. pylori izolata dobili smo rezultate osjetljivosti nakon provedenih eradicacijskih shema (sekundarna rezistencija). Uspoređujući s rezultatima ostalih studija iz različitih geografskih područja uočava se izrazita heterogenost, ne samo među pojedinim zemljama, već i unutar iste zemlje. Također je važno
napomenuti i neujednačenost u tumačenju primarne/sekundarne rezistencije. Tako su brojne studije rezultate rezistencije proglašavali primarnom rezistencijom ako je bio izostanak eradikacijske terapije i samo 4 tjedna prije endoskopije i uzimanja uzoraka. Dosadašnji objavljeni podaci o rezistenciji *H. pylori* za Hrvatsku odnosili su se na primarnu rezistenciju. Ponekad je usporedba studija otežana zbog malog broja testiranih izolata, često ograničenih na određenu skupinu bolesnika, a i zbog različitih laboratorijskih tehnika kojima se detektira antimikrobna osjetljivost. Dokazano je da rezistencija na klaritromicin, a u manjoj mjeri na metronidazol utječe na neuspjeh eradikacijske terapije ukoliko su uključeni u eradikacijski režim. U slučaju kada je soj osjetljiv na klaritromicin eradikacija iznosi oko 87.8%, dok u slučajevima gdje je taj soj rezistentan na klaritromicin stopa eradikacije spušta se na 18.3%. Osjetljivost na metronidazol rezultira u 97%-tnoj eradikaciji, a rezistencija na taj antibiotik rezultira u 25%-tnom smanjenju eradikacije (219).

Od kako je 1990-ih klaritromicin uveden u terapiju *H. pylori*, u mnogim zemljama bilježi se porast *H. pylori* klaritromicin rezistentnih sojeva. Velikim dijelom to je rezultat propisivanja klaritromicina za liječenje respiratornih i zubnih infekcija (219-221). Postotak rezistentnih sojeva u određenoj zemlji proporcionalan je s godinama potrošnje tog antibiotika u toj zemlji i razlikuje se u različitim dobnim skupinama (djeca, odrasli), kao rezultat povećanog propisivanja makrolida za infekcije respiratornog trakta (219,220,222).

Rezistencija *H. pylori* na metronidazol je kompleksna i primarno povezana s inaktivacijom nekoliko gena povezanih s redoks procesima (235). Suprotno od klaritromicinske rezistencije ima manji utjecaj na uspjeh eradikacije i može se prevladati povećanjem doze (236,150). Neopodudarnost između rezistencije *in vitro* na metronidazol i ishoda liječenja dijelom se može objasniti u promjenama razine kisika u želucu, gdje metronidazol rezistentni *H. pylori* sojevi postaju osjetljivi na metronidazol u uvjetima niske razine kisika *in vivo* (237). U naših izolata zabilježena je visoka rezistencija od 80.6%. U spomenutim studijama zabilježena je sekundarna rezistencija na metronidazol od 66.7% u Poljskoj (225), 68% u Njemačkoj (226), 72% u Francuskoj (227), 63.2% u Tajvanu (228), 53.3% u Izraelu (230).

Česta upotreba makrolida i metronidazola u terapiji *H. pylori* učinile su da je *H. pylori* vrlo često rezistentan na obje skupine antibiotika. U našoj studiji dvostruka rezistencija na CLA/AZT-MTZ prisutna je u više od 50% (52.4%)
izolata. Slične rezultate nalazimo u Izraelskoj studiji Boltin i sur. (230), te u studiji Toracchio i sur. iz centralne Italije (238).

Rezistencija na amoksicillin je niska u cijelom svijetu, a u mnogim zemljama nije ni registrirana (219). To je potvrđeno i u našoj studiji gdje su \(H. pylori\) izolati bili jako dobro osjetljivi na amoksicillin (100%), kao i u studijama iz Poljske (223,225), Njemačke (226), Italije (1% rezistencija) (238). Ta se situacija nije mijenjala godinama usprkos česte upotrebe amoksicillina kako u terapiji \(H. pylori\) infekcije, tako i drugih infekcija (224). Izuzetak su Brazil i južna Koreja gdje je zabilježena rezistencija na amoksicillin od 38%, odnosno 18.5% (239, 240).

Danas se sve više bilježi porast rezistencije na levofloksacin i to postaje globalni problem. Rezultat je to nekritičkog propisivanja florokinolona za druge infekcije (urinarne, respiratorne). A upravo je Maastricht IV koncenzus preporučio levofloksacin kao drugu liniju lijekovanja nakon neuspjeha prve linije (241). Raspon sekundarne rezistencije na levofloksacin u studijama kreao se od niskih 5.1% u studiji Boltin i sur. iz Izraela (230), do visokih 44.5% u studiji Wueppenhorst i sur. iz Njemačke (242) i 44.2% u studiji Almeida i sur. iz Portugala (243). Naši rezultati se poklapaju sa studijom Romano i sur. iz Italije koja je provedena na 104 \(H. pylori\) izolata i izvjestila o 14.6% sekundarne rezistencije na levofloksacin (225). Nešto veću rezistenciju od 16% ustanovila je poljska studija (225), te studija iz centralne Njemačke (17.6%) (226). Srednju vrijednost tog raspona rezistencije zabilježila je tajvanska studija (26.5%) (228). U našoj studiji bile su isključene osobe mlađe od 18 godina, ali studije koje su se bazirale na dobi ustanovile su manju rezistenciju u djece u odnosu na odrasle (232). To je osobito bilo značajno za florokinolone koji se rijetko propisuju u toj dobnoj skupini.

Megraud i sur. našli su da je starija dob rizični čimbenik za rezistenciju na levofloksacin (245).

Van der Hulst i sur. su prvi istražili povezanost cagA i stope izlječenja. Izvjestili su o značajno većoj stopi izlječenja kod bolesnika inficiranih s cagA pozitivnim sojevima (73%) u odnosu na cagA negativne sojeve (52%) (167).
Neke studije su uspijele potvrditi originalnu hipotezu (168,169,170), a neke nisu našle povezanost između cagA i stope izlječenja (171,172). S obzirom da su svi naši izolati rezultat neuspjelog liječenja nije moguća usporedba s tim studijama koje su uspoređivale prisutnost gena sa stopom izlječenja.

Suprotno, u našoj studiji pozitivni dupA značajno smanjuje rezistenciju H. pylori izolata na metronidazole za 75.4%.

Mogući su i drugi mehanizmi odgovorni za neuspjeh izliječenja, buduće studije će odgovoriti na ova pitanja.
7. ZAKLJUČCI

1. Rezultati naše studije pokazali su predominantnu prisutnost parcijalno izbrisanog cagPAI otoka (84.5%) i mali broj izolata s izbrisanim cagPAI (15.5%). Nijedan izolat nije posjedovao intaktni/kompletni cagPAI. Nije nađena statistička povezanost raspodjele istih s endoskopskom dijagnozom niti s patohistološkim promjenama želučane sluznice.

2. Nije utvrđena statistički značajna povezanost prisutnosti niti jednog od 10 detektiranih gena cagPAI otoka s endoskopskom dijagnozom (P>0.16).

3. Prevalencija cagA1 pozitivnih Helicobacter pylori sojeva u bolesnika iz sjeverozapadne Hrvatske je visoka, iznosi 71.8%.

4. CagA2 gen u našoj studiji je bio povezan s višim stupnjem inflamacije želučane sluznice antruma (P=0.032), višim ukupnim skorom za korpus (P=0.008) i s većom gustoćom H. pylori u korpusu (P=0.001).

5. Zastupljenost cagE u našoj studiji je bila veća od cagA (75.7% vs 71.8). Nije utvrđena statistički značajna povezanost s patohistološkim promjenama želučane sluznice.

6. CagT kao marker cagII regije detektiran je u 68% izolata i nađena je povezanost sa značajno manjom učestalošću atrofije antruma (P=0.021).

7. CagM detektiran je u 71.8% izolata i utvrđena je povezanost s većom gustoćom H. pylori u korpusu (P=0.020) i višim ukupnim skorom za korpus (P=0.046).

8. Apcag detektiran je u 63.1% izolata i utvrđena je povezanost s višim stupnjem inflamatornog skora u antrumu (P=0.025) i višim ukupnim skorom za antrum (P=0.022).

9. LEC (lijevi kraj cagII) detektiran je u 48,5% izolata i utvrđena je povezanost sa značajno manjom učestalošću atrofije antruma (P=0.008).
10. U našoj studiji udio \(tnpA\) i \(tnpB\) gena bio je nizak i bez povezanosti s patohistološkim nalazom, te bi se na temelju prethodno navedenih istraživanja moglo zaključiti da je rezultat analize izolata \(H. pylori\) specifične skupine bolesnika, tj. potpunog izostanka bolesnika s karcinomom želuca.

11. Sekundarna rezistencija \(H. pylori\) izolata iz sjeverozapadne Hrvatske nakon jednog ili više neuspešnih pokušaja liječenja izrazito je visoka. Više od 50% izolata posjeduje dvostruku rezistenciju na makrolid (azitromicin/klaritromicin) i metronidazol, a 14.6% na levofloksacin.

12. Nije utvrđena prisutnost \(dupA\) gena u bolesnika s duodenalnom ulkusnom bolesti iz sjeverozapadne Hrvatske. Nađena je značajno veća učestalost \(dupA\) gena u bolesnika s neulkusnom dispepsijom te s ulkusnom bolešću želuca (\(P=0.016\)). Takva raspodjela može biti i rezultat nejednolike zastupljenosti NUD i ulkusnih bolesnika u našoj studiji.

13. Nije utvrđena statistički značajna razlika u skoru intenziteta gastritisa ni u antrumu (\(P=0.434\)), ni u korpusu (\(P=0.084\)) prema zastupljenosti \(dupA\) gena.

14. Nije utvrđena statistički značajna razlika u zastupljenosti \(dupA\) gena prema predominaciji gastritisa (\(P=0.691\)).

15. Nije nađena povezanost prisutnosti 10 gena virulencije \(cagPAI\) otoka i rezistencije \(H. pylori\) izolata iz sjeverozapadne Hrvatske na testirane antibiotike.

16. Izostanak \(dupA\) gena bio je statistički značajno povezan s rezistencijom na metronidazol (\(P=0.012\)). Pozitivan \(dupA\) gen statistički značajno smanjuje šansu za rezistenciju izolata \(H. pylori\) na metronidazol za 75.4%.

17. Nije utvrđena statistički značajna povezanost \(dupA\) genotipa s tipom \(cagPAI\) (\(P=0.414\)).
8. SAŽETAK

UVOD
Nekoliko gena virulencije, uključujući i cagA smještenih u otoku patogenosti cagPAI (eng. citotoxin pathogenicity island) Helicobacter pylori povezuje se s gastroduodenalnim bolestima i stoga varijacije u genskoj strukturi cagPAI mogu biti odgovorne za različite kliničke ishode. Prema nekim istraživanjima dupA gen smješten u plastičnoj regiji (eng. plasticity region) H. pylori povezuje se s razvojem duodenalnog ulkusa i ima protektivnu ulogu u razvoju atrofije i intestinalne metaplazije.

CILJ
Cilj ovog istraživanja bio je utvrditi učestalost gena virulencije cagPAI otoka (Apcag, cagA1, cagA2, cagA3, cagM, cagT, cagE, LEC, tnpA i tnpB) i dupA gena Helicobacter pylori izolata bolesnika nakon višestruke neuspjele eradikacijske terapije, te ustanoviti njihovu povezanost s endoskopskom dijagnozom i patohistološkim promijenama želučane sluznice.

MATERIJALI/METODE
Geni virulencije 103 H. pylori DNA izolata detektirani su PCR metodom. Bolesnici su prema endoskopskoj dijagnozi svrstani u tri grupe: neulkusna dispepsija (NUD) (n=69), erozije/ulkus želuca (EUV) (n=22) i erozije/ulkus duodenuma (EUD) (n=12). Patohistološki nalazi skorirani su po Sydney-skoj klasifikaciji.

REZULTATI
Pojedinačna učestalost cagPAI gena bila je slijedeća Apcag 63.1%, cagA1 71.8%, cagA2 69.9%, cagA3 5.8%, cagM 71.8%, cagE 75.7%, cagT 68% tnpA 9.7%, tnpB 6.3% i LEC 48.5%. Učestalost dupA bila je 34.0%. Nije utvrđena statistički značajna povezanost prisutnosti niti jednog od 10 detektiranih gena cagPAI otoka s endoskopskom dijagnozom (P>0.16). Za
CagA, Apcag i cagM gene utvrđena je statistički značajna povezanost s višim stupnjem patohistoloških parametara kroničnog gastritisa (p<0.05). Nije utvrđena prisutnost dupA gena u bolesnika s duodenalnom ulkusnom bolesti iz sjeverozapadne Hrvatske. Nađena je značajno veća učestalost dupA gena u bolesnika s neulkusnom dispepsijom te s ulkusnom bolešću želuca (P=0.016). Nije utvrđena statistički značajna razlika u skoru intenziteta gastritisa ni u antrumu (P=0.434), ni u korpusu (P=0.084) prema zastupljenosti dupA gena. Više od 50% izolata pokazivalo je rezistenciju i na makrolide i na metronidazol.

ZAKLJUČAK
Naše istraživanje ukazalo je na visoku frekvenciju cagA, Apcag i cagM gena u izolatima bolesnika i njihovu povezanost s višim stupnjem patohistoloških promjena u želučanoj sluznici, što može ukazati na pojačani rizik za razvoj ulkusne, premaligne i maligne bolesti u bolesnika s bezazlenim endoskopskim nalazom. Nije nađena povezanosti dupA gena i duodenalnog ulkusa u bolesnika, kao ni statistički značajna zastupljenosti dupA gena prema dominaciji gastritisa. Ponovna eradikacija H. pylori infekcije kod tih bolesnika nameće se kao jedini pravilan izbor. S obzirom na nezadovoljavajuću djelotvornost uobičajene trojne terapije zasnovane na klaritromicinu zbog rastuće antibiotičke rezistencije, nameće se potreba za promjenama strategije liječenja koje bi povećale stupanj eradikacije (novi antibiotici ili nove kombinacije lijekova).
9. SUMMARY

BACKGROUND

Certain virulence genes including cagA located in the pathogenicity island cagPAI (eng. citotoxin pathogenicity island) of Helicobacter pylori are associated with gastroduodenal diseases and thus the variation of cagPAI might influence various clinical syndroms. According to some studies dupA gene located in plastic region (eng. plasticity region) of H. pylori is associated with development of duodenal ulcer and has protective role against development of atrophy and gastric metaplasia.

AIM

The aim of this study was to determine the frequency of virulence genes within cagPAI island (Ap, cagA1, cagA2, cagA3, cagM, cagT, cagE, LEC, tnpA i tnpB) and dupA gene in Helicobacter pylori isolates obtained from patients after multiple unsuccessful antimicrobial therapy, and to analyze the correlation between the presence of these genes and endoscopic diagnosis and pathohistological alterations of gastric mucosa.

MATERIALS/METHODS

Virulence genes of 103 H. pylori isolates were detected by PCR. According to endoscopid diagnosis the patients were classified into three groups: non-ulcer dyspepsia (NUD) (n=69), erosio/ulcus ventriculi (EUV) (n=22) and erosio/ulcus duodeni (EUD) (n=12).

Pathohistological findings were interpreted according to Sydney classification sheme.

RESULTS

Single prevalence of cagPAI gene was as follows: Ap 63.1%, cagA1 71.8%, cagA2 69.9%, cagA3 5.8%, cagM 71.8%, cagE 75.7%, cagT 68%, tnpA 9.7%, tnpB 6.3% i LEC 48.5%. The frequency of dupA was 34.0%.
There was no correlation between 10 analysed genes of cagPAI island with endoscopic diagnosis (P>0.16). The presence of CagA, Apcag i cagM gene was associated with higher grade of pathohistological parameters of gastritis (p<0.05). DupA gene was not found in patients with duodenal ulcer disease from Northwest Croatia. DupA gene was significantly more frequent in patients with non-ulcer dyspepsia and gastric ulcer disease (P=0.016). There was no statistically significant difference in gastritis intensity score either in antrum (P=0.434), or in corpus (P=0.084) in relation to the presence of dupA gene.

More then 50% of the isolates were resistant to both macrolides and metronidazol.

CONCLUSION

Our study demonstrated high frequency of cagA, Apcag i cagM genes in patient’s isolates and their correlation with high grade of pathohistological alterations in gastric mucosa, representing a risk factor for development of ulcer, premalignant and malignant diseases.

There was no correlation between the presence of dupA gene and duodenal ulcer. Moreover, no significant difference in the frequency of dupA gene according to the type of gastritis was found.

Repeated attempt to eradicate H. pylori seems to be the best choice for the patient. Concerning the unsatisfactory efficiency of triple therapy based on clarithromycin due to increasing resistance, new therapeutic options based on the new treatment strategies should be implemented in order to increase the level of eradication (new antibiotics or combination of antibiotics).
10. POPIS LITERATURE

39. Bahrami AR, Rahimi E, Safaei HG. Detection of *Helicobacter pylori* in City Water, Dental Units Water, and Bottled Mineral
Water in Isfahan, Iran. The Scien World J 2013; Article ID 280510, 5 stranica.

50. Marušić M. Dijagnostičke vrijednosti seroloških postupaka za utvrđivanje *Helicobacter pylori* infekcije i evaluacija učinka liječenja. Doktorska disertacija, Sveučilište Zagreb Medicinski fakultet 2000, Zagreb

51. Li L, Kelly LK, Ayub K, Graham DY, Go MF. Genotypes of *Helicobacter pylori* obtained from gastric patients taking or not taking NSAIDS. Am J Gastroenterol 1999;1502-1507.

68. Chrisment D, Dubus P, Chambonnier L i sur. Neonatal thymectomy favors Helicobacter pylori-promoted gastric mucosa-

114. Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL. Helicobacter pylori cytotoxin-associated gene A (cagA) subverts the apoptosis-stimulating protein of p53 (ASPP2)

122. Gomes LI, Rocha GA, Rocha AM, Soares TF, Oliveira CA, Bittencourt PF. Lack of association between Helicobacter pylori

130. Pacheco AR, Proenca-Modena JL, Sales AIL, Fukuhara Y, da Silveira WD, Pimenta-Modena. Involment of the Helicobacter pylori plasticity region and cag pathogenicity island genes in the

139. Schmidt HM, Andres S, Kaakoush N i sur. The prevalence of the duodenal ulcer promoting gene (dupA) in Helicobacter pylori isolates varies by ethnic group and is not universally associated

152. Sugimoto M, Furuta T, Shirai N i sur. Evidence that the degree and duration of acid suppression are related to Helicobacter pylori eradication by triple therapy. Helicobacter 2007; 12: 317-323.

177. EUCAST. 2011. EUCAST clinical breakpoints for *Helicobacter pylori*.

184. Salih BA, Guner A, Karademir A i sur. Evaluation of the effect of cagPAI genes of *Helicobacter pylori* on AGS epithelial cell

is there any relationship between resistance to metronidazole and cagA status? Aliment Pharmacol Ther 2009;30:784-790.

Član sam više znanstvenih i strukovnih organizacija (Hrvatski liječnički zbor, Hrvatska liječnička komora, Hrvatsko društvo za medicinsku mikrobiologiju, Hrvatsko torakalno društvo, European Society of Clinical Microbiology and Infectious Diseases).

Autor sam i koautor nekoliko stručnih i znanstvenih radova. Sudjelujem u nastavi iz predmeta Bakteriologija, virologija i parazitologija učenika Škole za medicinske sestre Vinogradarska (laboratorijske vježbe). Udana sam i majka dvojice sinova.