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ABSTRACT 

The impact of patient/donor matching for HLA-A, -B, -C, -DRB1 and -DQB1 genes in 

hematopoietic stem cell transplantation (HSCT) is well-recognized, but typing for additional 

genes, such as HLA-DPB1, is still controversial. Based on defined T-cell epitope (TCE) 

groups, all HLA-DPB1 mismatches can be classified as permissive or non-permissive. In this 

retrospective study we analysed 82 patient/matched unrelated donor (MUD) pairs who 

underwent HSCT, and explored the impact of HLA-DPB1 matches, permissive and non-

permissive mismatches on transplantation outcomes. Patient/MUD pairs matched for HLA-

DPB1 alleles in univariate analysis were associated with a significantly higher incidence of 

disease relapse compared to pairs who were permissive/non-permissive HLA-DPB1 

mismatched according to the TCE3 and TCE4 algorithms (P = 0.025 and P = 0.026, 

respectively), although the significance was lost in multivariate analysis. The analysis did not 

reveal any significant influence of HLA-DPB1 alleles on overall survival (OS), non-relapse 

mortality (NRM) or graft-versus-host disease (GVHD) incidence. In conclusion, our study 

presents evidence that HLA-DPB1 matching influenced the relapse rate in patients after 

HSCT so the HLA-DPB1 alleles should be implemented in the MUD search algorithm as a 

transplantation determinant. 
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Introduction 

The huge polymorphism of the classical human leukocyte antigen (HLA) genes and 

the recognition of HLA incompatibilities by the immune system represent a major barrier to 

allogeneic hematopoietic stem cell transplantation (HSCT) [1]. To lower risks of acute graft-

versus-host disease (GVHD) and mortality after HSCT, high resolution typing and matching 

for HLA-A, -B, -C, -DRB1, and -DQB1 alleles (10/10 match) between unrelated donor and 

patient still remains the gold standard, while the importance of HLA-DPB1 gene remains 

uncertain and pre-transplantation typing is not routinely performed. Because of weak linkage 

disequilibrium between HLA-DPB1 alleles and other HLA class II alleles [2], HSCT is 

generally performed across HLA-DPB1 allelic mismatches. 

The HLA-DBP1 gene is located in the HLA class II region of the chromosome 6p21.3, 

lying centromeric to the other HLA class II loci. It is highly polymorphic and in the terms of 

structure and function HLA-DPB1 resembles other HLA class II molecules - they are cell-

surface heterodimers, consisting of an alpha and beta chain, that function as receptors for 

processed peptides derived predominantly from membrane and extracellular proteins, which 

they present to CD4 T lymphocytes initiating an immune response [3]. The common 

assumption is that HLA-DP molecules are less important in the immune response than HLA-

DR or HLA-DQ molecules, because of a ~10-fold lower cell surface expression [4]. However, 

the HLA-DPB1 gene encodes fully functional molecules with specific responses reported in a 

number of settings. 

 In the performed in vitro assays set up to detect anti-HLA-DP alloreactive T cells, the 

observed T-cell reactivity patterns suggest the expression of a shared T-cell epitope (TCE) 

encoded by the HLA-DPB1 alleles [5]. The HLA-DPB1 alleles were thus classified according 

to their predicted immunogenicity in to high immunogenic group 1 (HLA-DPB1*09:01, 

*10:01, *17:01), intermediately immunogenic group 2 (HLA-DPB1 *03:01, *14:01, *45:01), 

and poorly immunogenic group 3 (most other HLA-DPB1 alleles). On the basis of a shared 

alloreactive T-cell epitope, the TCE3 algorithm was proposed for use in unrelated donor 

selection identifying permissive or non-permissive HLA-DPB1 mismatches. Later, a modified 

4-group algorithm (TCE4), including the HLA-DPB1*02 gene as a separate group with 

immunogenicity lower than that of group 2 alleles but higher than that of the low 

immunogenic alleles in group 3, was designed [6]. The latest classification into three TCE 

immunogenic groups, including 390 HLA-DPB1 alleles, was reported by Crivello et al. [7]. 

 



To date, the biological role of HLA-DP in HSCT still remains controversial. 

Retrospective studies analysing HLA-DPB1- matching status between matched unrelated 

donors (MUDs) and recipients at the allelic level, or classified as permissive/non-permissive 

mismatches were performed [5, 6, 8-19]. The given results are heterogeneous and an 

overview of results from literature is summarized in Table 1. However, analysis suggests that 

HLA-DPB1 classification according to T-cell epitope grouping can identify permissive and 

non-permissive unrelated recipient-donor combinations relevant to GVHD occurrence, 

mortality and disease relapse rate after HSCT. 

In an effort to contribute to the clarification of the role of HLA-DPB1 in HSCT, we 

performed a retrospective single centre analysis of the impact of permissive/non-permissive 

HLA-DPB1 disparities on the overall survival (OS), non-relapse mortality (NRM), GvHD 

occurrence and disease relapse rate among 82 patients who underwent HSCT from MUD. The 

validation of these findings could support the utility of including HLA-DPB1 alleles in pre-

transplantation typing to further improve MUD selection. 

 
 

 



2. Materials and methods 

2.1. Study population 

The study included 82 patients with hematological malignancies who had received a 

hematopoietic stem cell transplant from a 10/10 (HLA-A, -B, -C, -DRB1, -DQB1) MUD in 

the period of 2010 – 2015 at the University Hospital Centre Zagreb, Department for Internal 

Medicine, Division of Hematology. Namely, the University Hospital Centre Zagreb is the 

only hospital in Croatia where unrelated HSCT is performed and the patients originated from 

different areas of Croatia. The included patients were adults (N=67) or children (N=15) with a 

broad range of diseases that were an indication for HSCT: acute myelogenous leukaemia 

(AML, N=37),  acute lymphoblastic leukaemia (ALL, N=17), myelodysplastic syndrome 

(MDS, N=6), chronic myelogenous leukaemia (CML, N=3), non-Hodgkin lymphoma (NHL, 

N=4), Hodgkin lymphoma (HL, N=3), myelofibrosis (MF, N=2), severe combined 

immunodeficiency (SCID, N=3) and other malignancies (N=7). The majority of the patients 

were treated with a reduced-intensity conditioning (RIC) regimen mainly based on 

fludarabine in a dose of 30 mg/m2 daily over 4-6 days, IV busulfan 3.2 mg/kg daily over 2-3 

days, and anti–thymocyte globulin (ATG) in a total dose of 5 mg/kg infused over 2 days. 

Other patients were treated with a myeloablative conditioning regime (MAC) receiving IV 

busulfan in a daily dose of 3.2 mg/kg over 4 days, 60 mg/kg of cyclophosphamide over 2 days 

and ATG in total dose of 1.5 mg/kg over 11 hours. GvHD prophylaxis was performed with 

cyclosporine (CsA) and mycophenolate mofetil (MMF). Patients received bone marrow (BM) 

grafts or peripheral blood stem cell (PBSC) grafts, mobilized from donors with granulocyte-

colony-stimulating factor (GCSF) (filgrastime, 10 μg/kg per day). No manipulation of the 

graft, such as T-cell depletion, was performed in any of the cases. Characteristics of the 

patients and their MUDs are given in Table 2. 

 

2.2. HLA typing  

All patient-MUD pairs were HLA typed at the allelic level for HLA-A, -B, -C, -DRB1 

and -DQB1 using the standard polymerase chain reaction-sequence specific priming (PCR-

SSP) protocol for Olerup SSP® typing kits (Olerup GmbH, Vienna, Austria) or by PCR-

sequence specific oligonucleotide probing (PCR-SSOP) method, using the commercially 

available Immucor Lifecodes HLA-SSO typing kit (Immucor Transplant Diagnostics, Inc, 

Stamford, USA) [20, 21]. For the purpose of this study, the retrograde allelic HLA-DPB1 

typing of patients and their MUDs was performed using the Luminex technology (Immucor) 

in the combination with PCR-SSP method (Olerup). The combination of alleles that could not 



be discriminated (HLA-DPB1*03:01/104:01 and DPB1*04:02/105:01) was designated by 

case ‘P’ and the common alleles were used for alternative genotypes. 

 

2.3. Study design 

The first step was to determine whether the patient and their MUD were HLA-DPB1- 

matched or mismatched (MM) and HLA-DPB1 alleles were assigned to corresponding 

immunogenic T-cell-epitope groups (group 1, 2, 3 and/or 4). Furthermore, all patient-MUD 

pairs (N=75) who were a single or a double HLA-DPB1 allele MM were classified as 

permissive (T-cell-epitope group matched) or non-permissive (T-cell-epitope group MM) 

according to TCE3 [5, 7] and TCE4 [6] algorithm. The patient-MUD pairs were defined as 

HLA-DPB1 permissive mismatched if both the patient's and the donor's HLA-DPB1 alleles 

were from the same immunogenic group (1/1, 2/2, 3/3 and/or 4/4) or they carried at least one 

allele from the high immunogenic group 1 (1/2, 1/3 and/or 1/4). Also, pairs were permissive 

mismatched if neither the patient nor donor had a group 1 allele but carried at least one 

immunogenic group 2 allele (2/3 and/or 2/4). Additionally, in TCE4 classification a part of 

the TCE3-permissive disparities (3/3) becomes non-permissive, and only patient-MUD pairs, 

both carrying at least one immunogenic group 3 allele (3/4 vs 4/4), were permissive 

mismatched. All non-permissive TCE3 disparities were also TCE4 non-permissive. For 

confirmation, the classification of all patient-MUD pairs was also performed using an online 

calculator, the DPB1 T-Cell Epitope Algorithm v2.0 (http://www.ebi.ac.uk). Patient-MUD 

pairs without HLA-DPB1 allelic MMs (N=7) were not included in permissive HLA-DPB1 

disparity. Since the chance of matching for HLA-DPB1 was the same whether the other HLA 

loci were matched or not [10], we analysed HLA-DPB1 matching as an individual risk factor 

for transplantation outcomes. Clinical data were collected from the transplantation centre and 

the effect of HLA-DPB1 match and HLA-DPB1 permissive/non-permissive MMs on HSCT 

outcome were estimated. The OS, NRM, GvHD incidence and disease relapse rate were the 

main research endpoints analysed. The starting point for time-to-event analysis was “date of 

transplantation”. The OS rate was defined as the time to death from any cause. Surviving 

patients were censored at the time of last follow-up. NRM was defined as all causes of death 

without evidence of initial disease. Acute and chronic GvHD were diagnosed according to the 

standard criteria [22, 23]. 

 

2.4. Statistical analysis 

http://www.ebi.ac.uk/ipd/imgt/hla/dpb.html


The observed HLA-DPB1 allele frequencies in the research group were calculated by 

direct counting. The 2-year probabilities of OS were analysed using Kaplan-Meier methods 

evaluating the influence of the HLA-DPB1 matches/mismatches on specified transplantation 

endpoint. Cumulative incidence was used to estimate the disease relapse rate, NRM and 

probability of GvHD occurrence after HSCT. Death without relapse was regarded as a 

competing risk for relapse, and relapse as a competing risk for non-relapse mortality. The 

two-sided P values were obtained from the log-rank test and were set to P≤ 0.05. Logistic 

regression analysis was performed to explore the effect of major clinical variables (patient age 

at transplantation, patient/MUD gender, source of stem cells, conditioning regimen) with 

HSCT outcome. The likelihood ratio and significance values are presented as Odds Ratio 

(OR) with a 95% Confidence Interval (CI) and the P-value for each variable. All statistical 

analyses were performed using XLSTAT-Biomed solution software, version 2017.3. 

 



3. Results  

3.1. HLA-DPB1 allele polymorphism  

Among the 82 patient-MUD pairs in this study, only 22 of the 894 HLA-DPB1 alleles 

known to date (IMGT/HLA database v.3.29) [24] were detected. The most frequent HLA-

DPB1 alleles were HLA-DPB1*04:01 (37.19%), followed by DPB1*04:02P (17.68%), 

DPB1*02:01 (12.19%), DPB1*03:01P (9.14%) and DPB1*01:01 (6.09%). The remaining 17 

alleles had a frequency of less than 5.0%. In the patient group, 60 (73.17%) samples were 

HLA-DPB1 heterozygous and 22 (26.83%) samples were homozygous. A similar distribution 

of HLA-DPB1 heterozigosity (59/82) and homozigosity (23/82) was detected among the 

MUDs. 

 

3.2. HLA-DPB1 matching status of patients and their MUDs 

Out of the 82 patient-MUD pairs studied, only 7 pairs shared a complete identity for 

all 12 HLA alleles (12/12). Consequently, the rate of HLA-DPB1 allele match between 

patients and MUDs is 8.53%. The remaining 75 pairs had at least one (50/75) or both (25/75) 

allelic MM at HLA-DPB1. According to the TCE3 algorithm, permissive MMs were present 

in 38 (50.66%) patient-MUD pairs and non-permissive HLA-DPB1 MMs were detected in 37 

(49.34%) pairs (12 HvG; 25 GvH direction). While considering HLA-DPB1*02 as a separate 

immunogenic group according to the TCE4 algorithm, 24 (32.0%) patient-MUD pairs were 

permissive mismatched, while non-permissive HLA-DPB1 MMs were detected in 51 (68.0%) 

pairs (18 HvG; 33 GvH direction). 

 

3.3. Clinical outcome 

Overall survival. The estimated 2-year probability of OS in the whole group was 

53.65%. There was no significant difference in OS between those recipient-MUD pairs who 

were matched and those who were (TCE3 and TCE4) permissive/non-permissive mismatched 

for HLA-DPB1 alleles, (TCE3: OR = 0.58 [CI, 0.32–7.72], P = 0.41; TCE4: OR = 3.42 [CI, 

0.61–19.39], P = 0.58), although there is the tendency of worse OS for HLA-DPB1-matched 

recipient-MUD pairs (Figure 1a and 2a). Logistic regression analysis showed that none of the 

analysed baseline characteristics regarding age, gender, conditioning regime, source of stem 

cells and HLA compatibility have a significant influence on OS (Table 3). 

Non-relapse mortality. The 2-year probability of NRM was 26.83%. According to the 

univariate analysis the impact of HLA-DPB1 matched and TCE3 or TCE4 permissive/non-

permissive HLA-DPB1 mismatched recipient-MUD pairs had no deleterious impact on NRM 



(TCE3: OR = 0.30 [CI, 0.03–2.65], P = 0.91; TCE4: OR = 1.22 [CI, 0.11–13.97], P = 0.82) 

(Figure 1b and 2b). The only factor showing a statistically significant (P=0.04) influence on 

NRM in logistic regression analysis were the patient’s age <18 (Table 3) while other factors 

were not significantly associated.  

Graft versus host disease. The overall incidence of GvHD was 37.81%. Among 31 

GvHD positive patients, 23 were determined as having acute GvHD while 8 patients revealed 

chronic GvHD. The univariate analysis of clinical data from the HLA-DPB1-matched and the 

HLA-DPB1 (TCE3 and TCE4) permissive/non-permissive mismatched groups revealed no 

significant difference of GvHD incidence (TCE3: OR = 0.55 [CI, 0.09–3.12], P = 0.54; TCE4: 

OR = 0.85 [CI, 0.13–5.36], P = 0.90) (Figure 1c and 2c). Patient, donor and graft variables 

were not significantly associated with GvHD occurrence in logistic regression analysis (Table 

3) 

 Relapse. Among our group of analysed patients, 19 relapsed. The HLA-DPB1 allele 

matched recipient-MUD pairs were associated with significant increase in disease relapse 

compared with both permissive and non-permissive HLA-DPB1 allele MMs, according to 

both the TCE3 (OR = 4.72 [CI, 0.91–24.36], P = 0.025) and the TCE4 (OR = 7.02 [CI, 1.12–

44.01], P = 0.026) algorithms (Figure 1d and 2d). There was no statistically significant 

difference in relapse rate observed between permissive and non-permissive cases, although 

there is clearly visible separation between groups on the graph pointing smaller relapse rate 

among HLA-DPB1 non-permissive MM group of patients. Logistic regression analysis of 

patient, donor and graft variables which might be associated with relapse incidence was 

performed in regards to HLA-DPB1 level matching, and none of the analysed characteristics 

were found to have a significant influence on the researched endpoint (Table 3). 



4. Discussion 

 

The results of this study pointed out several findings about HLA-DPB1 allele 

distribution, HLA-DPB1 matching rate among patients and their MUDs as well as the role of 

HLA-DPB1 alleles in HSCT. The most frequent HLA-DPB1 alleles found in our study group 

(HLA-DPB1*04:01, -DPB1*04:02P, -DPB1*03:01P, -DPB1*02:01, -DPB1*01:01,) are in 

concordance with the frequencies of HLA-DPB1 alleles in Croatian population [25]. It is 

interesting to note that the most frequent allele among our patients, HLA-DPB1*04:01, is also 

the most frequent allele in the rest of the Europe and North America but its frequency lowers 

as we go towards south. At the same time, the frequency of DPB1*04:02 increases and it is 

the most frequent allele in Middle and South America. In Asia, the frequency of HLA-

DPB1*04:01 is high in the east and as we move to the west its frequency decreases, and the 

frequency of HLA-DPB1*02:01 becomes predominant [26]. Also, an important observation is 

that these four alleles are present in 82.31% of individuals of the researched group. According 

to Sidney et al., a panel of five HLA-DPB1 molecules (DPB1*01:01, DPB1*02:01, 

DPB1*04:01, DPB1*04:02, and DPB1*05:01) is encountered with an average phenotypic 

frequency of >15% across the seven main populations (Australia, Europe, North America, 

Oceania, South America, Southeast Asia, and sub-Saharan Africa) covering ~92% of the 

average population at the HLA-DPB1 locus [27]. 

The frequency of HLA-DPB1 alleles was approximately equal in both donors and 

patients; however, only 7/82 patient/MUD pairs shared a complete HLA-DPB1 compatibility. 

Since none of the transplanted pairs had HLA–DPB1 typing performed before transplantation, 

this was an unexpected finding. However, the low percentage of HLA-DPB1 matched 

patient/MUD pairs is comparable to the rate observed in the IHWS [11], French [12], 

Austrian [13] and Swiss [15] studies. According to our results and data from the above 

mentioned studies, mismatching at the HLA-DPB1 alleles is very frequent in patient/ MUD 

pairs (up to ~91%). The mismatching rate of HLA-DPB1 alleles in HLA identical siblings is 

around 5% [28, 29]. This is a consequence of the low linkage disequilibrium between HLA-

DPB1 and HLA-DR/-DQ loci as well as the high HLA-DPB1 polymorphism and thus the 

probability of finding a 10/10 MUD also matched for HLA-DPB1 alleles is very low. 

Therefore, to overcome the difficulty of finding a HLA-DPB1 MUD, the classification of 

HLA-DPB1 alleles according to their immunogenicity as permissive or non-permissive has a 

benefit for increasing the number of acceptable donors [5, 6]. Tram et al., recently performed 

a study about the likelihood of identifying a HLA-DPB1 permissive MUD for patients with 



10/10 matched donors in the Be The Match Registry and concluded that a young HLA-DPB1 

permissive MUD is at the start possible for 59% of the patients carrying TCE group 3 alleles 

and improves to 70% after additional DPB1 typing of 4 donors [30]. The ability to find a 

HLA-DPB1 permissive match for each TCE group is similar to the frequency of expression of 

these alleles in given populations. 

The data from different studies presented in Table1 mostly suggest that HLA-DPB1 

allele MMs may be tolerated, or are even beneficial in HSCT. Fleischhauer et al., observed in 

their study that being matched or mismatched for HLA-DPB1 alleles according to TCE 

groups provides a better prediction of transplant outcomes than does consideration of HLA-

DPB1 allele level matching alone [14]. Our study supports findings that HLA-DPB1 

mismatching reduces the risk of disease relapse compared with HLA-DPB1 allele-matched 

cases. The same observation was reported in a few other studies [10, 11, 17]. On the other 

hand, the association of HLA-DPB1 MMs with theoretically expected higher GvHD 

occurrence was not proven in this research (no effect on GvHD). The possible explanation of 

the beneficial effect of HLA-DPB1 MMs regarding disease relapse rate is the knowledge that 

the vast majority of leukemic cells expressed variable levels of DPB1 antigens on the cells 

surface and could be killed by DPB1-specific cytotoxic T cells, inducing a graft versus 

leukaemia effect (GvL) [31, 32]. In this way, allospecific T cells, which are responsible for 

GvHD, might also be directly responsible for the anti-leukemic effect with HLA-DPB1 as a 

specific GvL target. Rutten et al., demonstrated that HLA-DP-specific T cells were found in 

patients with beneficial clinical responses in both presence and absence of GvHD and the 

conclusion was that the balance between GvHD and GvL reactivity in each individual is also 

determined with the local environment and the induction of other immune responses [33]. 

In the current study, no significant differences between HLA-DPB1 permissive and 

non-permissive MMs on HSCT outcome were observed and the TCE3-group algorithm 

compared to the TCE4-group algorithm showed similar associations with all investigated 

clinical endpoints. These results are not in agreement with the data reported in three different 

studies [5, 6, 14] with better prediction of HSCT outcome with permissive DPB1 MMs 

compared to non-permissive MMs. These differences are possibly associated with the 

transplant characteristics of each investigated group such as the intensity of the conditioning 

regimen, stem cell source and GvHD prophylaxis. In the mentioned studies, the conditioning 

regimen was mostly MAC while in our study group, around half of the patients (54.87%) 

were treated with RIC using ATG which is known to decrease the risk of GvHD after 

allogeneic HSCT [34], and because of that it maybe influences or even overcomes the HLA-



DPB1 MM effect. On the other hand, the BM was the main stem cell source in those studies 

compared with our study group whereas PBSC were used in the majority of patients (71.95%) 

and it is known that the use of PBSC compared to BM is associated with increased risk of 

GvHD [35]. The multivariate analysis did not point to any of these two factors as significant 

for the HSCT outcome in our group of patients. However, it is possible that those two factors 

in combination with the reactivity of the HLA-DPB1 allospecific T cells influence the balance 

between GvHD and GvL. According to data presented in the study by Fleischhauer et al., 

allogeneic PBSC rejection was mediated by CD4+ T-cells recognizing a HLA-DPB1*09:01 

alloantigen (high immunogenic group 1)  from the patient’s blood [36]. So, it is possible that 

the strength of HLA-DPB1 immunogenicity directs the HSCT outcome toward GvL or toward 

GvHD. In that case, a classification of HLA-DPB1 alleles as permissive or non-permissive 

should be applied in the selection of MUDs to improve HSCT outcome. 

In conclusion, patient/MUD pairs matched for HLA-DPB1 were associated with a 

significantly higher incidence of disease relapse compared to pairs who were permissive or 

non-permissive HLA-DPB1 mismatched. Our study should be helpful in our transplant centre 

practice regarding the impact of HLA-DPB1 matching since it is clear that HLA-DPB1 alleles 

should be treated as transplantation determinant. These results suggest that HLA-DPB1 

matching is not preferable for patient/MUD pairs, but this should be confirmed in a larger and 

more homogeneous patient cohort to help further assess the influence of HLA-DPB1 alleles 

on outcomes after HSCT. 
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Table 1. A literature overview of the HLA-DPB1 allele associations with the unrelated hematopoietic stem cell transplantation outcomes. 

 

Legend: GvHD = graft versus host disease (a=acute; c=chronic); HLA = human leukocyte antigen; MM = mismatch; No =Number; Non-p = 

non-permissive; NRM = non-relapse mortality; OS = overall survival; TRM = transplant relate mortality; / = not investigated in the study 

 

Studie No of patients OS GvHD NRM/TRM RELAPSE 

Petersdorf EW et al. 2001, [8] 205 HLA-DPB1 MM - no effect  Two HLA-DPB1 MM - 

increased risk of GvHD 

/ / 

Loiseau P et al. 2002, [9] 57 Two HLA-DPB1 MM - 

poorer survival 

Two HLA-DPB1 MM - 

increased GvHD 

/ HLA-DPB1 MM - no 

effect  

Zino E et al. 2004, [5] 118 / Non-p HLA-DPB1 MM – 

increased aGvHD  

Non-p HLA-DPB1 MM - 

increased TRM 

Non-p HLA-DPB1 MM – 

no effect 

Shaw BE et al. 2006, [10] 423 HLA-DPB1 match - 

worse OS 

/ / HLA-DPB1 match - 

higher relapse rate 

Shaw BE et al. 2007, [11] 5929 HLA-DPB1 MM – no effect HLA-DPB1 MM -  

increased risk of aGvHD  

HLA-DPB1 MM - higher 

TRM 

HLA-DPB1 MM - 

decreased relapse 

Loiseau P et al. 2007, [12] 334 HLA-DPB1 MM - no effect HLA-DPB1 MM - no effect / HLA-DPB1 MM - no 

effect 

Ludajic K et al. 2008, [13] 161 HLA-DPB1 MM - worse OS HLA-DPB1 MM – 

increased GvHD  

HLA-DPB1 MM - higher 

TRM 

HLA-DPB1 MM - no 

effect 

Crocchiolo R et al. 2009, [6] 621 Non-p HLA-DPB1 MM – 

lower OS  

Non-p HLA-DPB1 MM - 

increased GvHD 

Non-p HLA-DPB1 MM – 

increased NRM  

Non-p HLA-DPB1 MM - 

no effect 

Fleischhauer K et al. 2012, [14] 8539 / Non-p HLA-DPB1 MM - 

increased aGVHD 

Non-p HLA-DPB1 MM – 

increased NRM  

Non-p HLA-DPB1 MM – 

no effect 

Bettens F et al. 2012, [15] 246 HLA-DPB1 match - 

beneficial effect for OS 

HLA-DPB1 MM – 

increased GvHD 

/ / 

Touzeau C et al. 2012, [16] 141 Non-p HLA-DPB1 MM – no 

effect 

Non-p HLA-DPB1 MM – 

no effect 

/ Non-p HLA-DPB1 MM – 

no effect 

Pidala J et al. 2014, [17] 8003 / HLA-DPB1 MM – 

increased GvHD 

HLA-DPB1 MM – 

increased TRM 

HLA-DPB1 MM – 

decreased relapse 

Gagne K et al. 2015, [18] 1342 HLA-DPB1 MM – no effect HLA-DPB1 MM – 

increased GvHD 

HLA-DPB1 MM – no 

effect 

Non-p HLA-DPB1 MM – 

increased relapse 

Moyer AM et al. 2017, [19] 153 HLA-DPB1 MM – no effect HLA-DPB1 MM – 

increased cGvHD; Non-p 

HLA-DPB1 MM - 

increased aGVHD 

HLA-DPB1 MM – no 

effect 

HLA-DPB1 MM – no 

effect 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Loiseau%20P%5BAuthor%5D&cauthor=true&cauthor_uid=17640601


Table 2. Patients and matched unrelated donors characteristics and hematopoietic stem cell 

transplantation variables. 

 

Patient and donor characteristics n                         % 

Number of patient/MUD pairs 82  

Patients age: year, median (range)           40 (1-62)   

Donor age:  year, median (range)             34 (18-58)   

Gender - patient/donor:    

   Female-female 17 20.73 

   Female-male 11 13.41 

   Male-female 24 29.27 

   Male-male 30 36.59 

Diagnosis:    

   Acute myelogenous leukaemia (AML) 37 45.1 

   Acute lymphoblastic leukaemia (ALL) 17 20.7 

   Myelodysplastic syndrome (MDS) 6 7.3 

   Chronic myelogenous leukaemia (CML) 3 3.7 

   Non-Hodgkin lymphoma (NHL) 4 4.9 

   Hodgkin lymphoma (HL) 3 3.7 

   Myelofibrosis 2 2.4 

   Severe combined immunodeficiency (SCID) 3 3.7 

   Other 7 8.5 

Conditioning regimen:    

   Myeloablative (MAC) 37 45.12 

   Reduced intensity (RIC)  45 54.88 

Stem cell source:    

   Bone marrow (BM) 23 28.05 

   Peripheral blood (PBSC) 59 71.95 

Number of HLA-DPB1 mismatches:   

   0 7 8.53 

   1 50 47.56 

   2 25 43.91 
Legend: HLA = human leukocyte antigen; MUD = matched unrelated donor; n = number;  

 

 

 

 

 

 

 

 



Table 3. The logistic regression analysis of different risk factors associated with overall survival, non-relapse mortality, graft versus host disease 

occurrence and relapse incidence in patients with hematological malignancies who underwent HSCT from unrelated donor (N=82). 

 

Legend: GvHD = graft versus host disease; HLA = human leukocyte antigen; NRM = non-relapse mortality; OS = overall survival; TCE3 = three-group 

T-cell epitope; TCE4 = four-group T-cell epitope 

 

 

 

 

 

 

 OS NRM  GvHD RELAPSE 

Variable Odds ratio P Odds ratio P Odds ratio P Odds ratio P 

Patient characteristics: 

Age  

Gender  

Conditioning regimen  

Graft type 

Diagnosis - myeloid 

Diagnosis - lymphoid 

Patient-donor HLA-DPB1 disparity: 

Number of HLA-DPB1 mismatches 

TCE3 permissive/non permissive disparity 

TCE4 permissive/non permissive disparity 

 

2.04 [0.50-8.29] 

0.52 [0.15-1.73] 

0.71 [0.22-2.27] 

1.23 [0.36-4.20] 

0.69 [0.15-7.43] 

1.02 [0.08- 6.12] 

         

0.29 [0.04-2.55] 

0.58 [0.15-2.23] 

1.68 [0.39-7.21] 

 

0.32 

0.29 

0.58 

0.74 

0.79 

0.62 

 

0.27 

0.43 

0.48 

 

7.99 [0.71-90.04] 

1.45 [0.33-6.37] 

1.36 [0.32-5.80] 

0.67 [0.14-3.07] 

0.58 [0.25-1.93] 

1.37 [0.34-7.70] 

 

3.16 [0.23-41.95] 

1.94 [0.10-36.24] 

1.62 [0.34-7.78] 

 

0.04 

0.62 

0.67 

0.61 

0.24 

0.59 

 

0.38 

0.65 

0.54 

 

1.18 [0.28-5.10] 

2.24 [0.67-7.51] 

1.83 [0.57-5.93] 

1.19 [0.33-4.27] 

2.06 [0.45-7.52] 

0.27 [0.13-2.01] 

 

2.06 [0.28-14.72] 

0.60 [0.16-2.25] 

1.12 [0.26-4.67] 

 

0.81 

0.19 

0.31 

0.78 

0.82 

0.66 

 

0.47 

0.45 

0.88 

 

0.29 [0.05-2.01] 

0.67 [0.17-2.63] 

0.54 [0.13-2.19] 

4.04 [0.76-21.23] 

0.21 [0.14-1.94] 

2.21 [0.79-8.23] 

 

0.26 [0.03-3.67] 

1.07 [0.23-5.72] 

0.66 [0.11-3.72] 

 

0.22 

0.57 

0.40 

0.10 

0.18 

0.23 

 

0.19 

0.92 

0.63 



 
 

 

Legend: HLA = human leukocyte antigen; MM = mismatch  

Figure 1. Association of HLA-DPB1-match and HLA-DPB1 permissive/non-permissive mismatch on HSCT outcomes in patient/matched unrelated donor 

pairs according to three-group T-cell epitope (TCE3) algorithm: A) overall survival; B) non-relapse mortality; C) graft versus host disease; D) relapse rate. 



 

 

Legend: HLA = human leukocyte antigen; MM = mismatch  

Figure 2. Association of HLA-DPB1-match and HLA-DPB1 permissive/non-permissive mismatch on HSCT outcomes in patient/matched unrelated donor 

pairs according to four-group T-cell epitope (TCE4) algorithm: A) overall survival; B) non-relapse mortality; C) graft versus host disease; D) relapse rate. 


