
http://www.elsevier.com/locate/issn/21522650
http://www.sciencedirect.com/science/journal/21522650
http://dx.doi.org/10.1016/j.clml.2016.06.004

http://medlib.mef.hr/2755

University of Zagreb Medical School Repository
http://medlib.mef.hr/
Title:
Canonical Wnt/β-catenin signaling pathway is dysregulated in patients with primary and secondary myelofibrosis

Authors:
Marko Lucijanica, Ana Livunb, Cedna Tomasovic-Loncaricc, Tajana Stoos-Veicd,e, Vlatko Pejsae,f, Ozren Jaksica,f, Zeljko Prkaa, Rajko Kuseca,f

Affiliations:
a Department of Hematology, University Hospital Dubrava, Zagreb, Croatia
b Clinical Institute of Laboratory Diagnosis, Division of Molecular Diagnosis and Genetics, University Hospital Dubrava, Zagreb, Croatia
c Department of Pathology, University Hospital Dubrava, Zagreb, Croatia
d Department of Clinical Cytology and Cytometry, University Hospital Dubrava, Zagreb, Croatia
e University of Osijek, School of Medicine, Osijek, Croatia
f University of Zagreb, School of Medicine, Zagreb, Croatia

Corresponding author:
Marko Lucijanic; Department of Hematology, University Hospital Dubrava, Avenija Gojka Suska 6, 10000 Zagreb, Croatia; email: markolucijanic@yahoo.com
Conflicts of interest: None

Funding: University of Zagreb Research grant BM068-project 1101439 to RK

Informed consent: All subjects in whom bone marrow was cryopreserved or molecular studies were performed provided written informed consent.

Ethical approval: The study was approved by the Institutional Review Board.
MicroAbstract:

Activation of Wnt/β-catenin signaling pathway is associated with malignant transformation, development of fibrosis and angiogenesis. We analyzed β-catenin mRNA expression in bone marrows of 29 patients with primary (PMF), four with secondary myelofibrosis (SMF) and 16 controls using qRT-PCR. B-catenin expression is increased in both PMF and SMF and might potentiate anemia.

Abstract:

Introduction: B-catenin is a central effector molecule of canonical Wnt signaling pathway. It is important for maintenance of stem cell homeostasis and its aberrant activation has been implicated in a wide array of malignant hematological disorders. There are few reports suggesting its dysregulation in Philadelphia chromosome negative myeloproliferative neoplasms (Ph- MPNs).

Patients and methods: We analyzed β-catenin mRNA expression in bone marrow (BM) aspirates of 29 patients with primary (PMF) and four patients with secondary, post Ph- MPN, myelofibrosis (SMF) using qRT-PCR. Control group consisted of 16 BM aspirates from patients with limited-stage aggressive Non-Hodgkin lymphoma without BM involvement. We compared relative gene expression with clinical and hematological parameters.

Results: B-catenin relative expression differed significantly among groups (p=0.0002), it was significantly higher in patients with both PMF and SMF than in control group, but did not differ between PMF and SMF patients. Negative correlation was found regarding hemoglobin level in PMF (p=0.017). No association according to JAK2 V617F mutational status or JAK2 V617F allele burden was detected.

Conclusion: Present study shows for the first time that β-catenin mRNA expression is increased in patients with both PMF and SMF and its upregulation might potentiate anemia. Number of inflammatory cytokines associated with PMF are capable of mediating their effects through increased β-catenin expression. Accordingly, β-catenin can induce expression of number of genes implicated in processes of cell cycle control, fibrosis and angiogenesis which are central to the PMF pathogenesis. Therefore, β-catenin may represent interesting new therapeutic target in these diseases.

Keywords:

Wnt; β-catenin; primary myelofibrosis; secondary myelofibrosis; JAK2 V617F
Introduction:

Primary myelofibrosis (PMF) is a Philadelphia chromosome negative myeloproliferative neoplasm (Ph- MPN) driven by clonal expansion of pluripotent hematopoietic stem cell. Proliferating clone and bone marrow stroma produce inflammatory cytokines leading to reactive bone marrow fibrosis, increased angiogenesis and subsequent development of extramedullary hematopoiesis. Although no disease-causing mutation has been recognized, JAK2, MPL or calreticulin mutations are present in majority of patients. Disease can manifest differently in individual patients with varying number of myeloid lineages proliferation or cytopenias, marked hepato and splenomegaly with associated complications and prominent constitutional symptoms.

PMF related Ph- MPNs like polycythemia rubra vera (PRV) and essential thrombocytosis (ET) share common biological and clinical features with PMF and can evolve to secondary myelofibrosis (SMF) during course of disease. PMF and post PRV / post ET SMF have different molecular backgrounds; PMF harbors larger number of mutated genes while SMF more closely mirrors the disease of origin.

Homeostasis of both healthy and diseased human tissues is regulated by a stem cell network of signaling cascades where canonical Wnt signaling cascade plays a pivotal role. Binding of canonical Wnt ligands (Wnt1, Wnt3a, Wnt8) with receptor Frizzled induces membranous complex formation with low-density-lipoprotein receptor related protein 5/6 (LRP5/6) and recruits intracellular proteins Dishevelled and Axin to plasma membrane. Without canonical Wnt stimulation, Axin resides in a complex with adenomatous polyposis coli (APC), glycogen synthase kinase 3 (GSK3) and casein kinase 1 (CK1). Complex captures central effector molecule of canonical Wnt signaling – β-catenin which leads to its phosphorylation, ubiquitination and subsequent degradation. Upon canonical Wnt stimulation, β-catenin is released from aforementioned protein complex, pairs with the lymphoid enhancer factor/T cell factor (LEF/TCF), enters nucleus and induces transcriptional activation of target genes involved in stem cell maintenance, expansion and lineage specification in both embryonic and adult tissues. Aberrant activation of canonical Wnt/β-catenin signaling increases propensity for cell malignant transformation and has been implicated in a wide array of malignant hematological disorders like multiple myeloma, chronic lymphocytic leukemia, chronic myelogenous leukemia (CML), acute myeloid leukaemia etc. There are few reports suggesting its dysregulation in Ph-MPNs with PMF patients receiving only limited attention.

Aim of this study was to analyze the expression of canonical Wnt effector β-catenin in bone marrow aspirates of patients with PMF and SMF through mRNA expression. We compared relative gene expression with clinical and hematological parameters.

Patients and methods:

Bone marrow aspirates of 29 patients with PMF and four patients with SMF who were diagnosed in our institution from 2004 to 2015 were analyzed. The diagnosis was established according to the current WHO / IWG-MRT criteria and the degree of bone marrow fibrosis was graded according to the current European consensus. Control group consisted of 16 age and sex matched bone marrow aspirates obtained from patients with limited-stage aggressive Non-Hodgkin lymphoma without bone marrow involvement. All patients and controls provided written informed consent for bone marrow cryopreservation and molecular studies. The study was approved by the Institutional Review Board.

Mononuclear cells were isolated from bone marrow aspirates using Histopaque (Sigma, St. Louis, MO, USA; density 1.077 g/mL) and preserved in liquid nitrogen using DMSO until needed. Total RNA was extracted using Trizol reagent (TriPure; Roche Mannheim, Germany), reversely transcribed
to cDNA (MuLV Reverse Transcriptase; Applied Biosystems, Foster City, CA) and amplified by quantitative PCR using CTNNB1 TaqMan gene expression assay (Hs00355049_m1 Thermo Fisher Scientific) in an ABI Prism 7300 Sequence Detection system (Applied Biosystems). QRT-PCR was performed in duplicate for each sample. B-catenin relative expression was calculated as ΔCT values using abl as the reference gene (CTβ-catenin - CTabl). JAK2 V617F mutation analysis and transcript levels quantification were performed according to previously published methods. 19, 20

The normality of data distribution was tested using the Shapiro-Wilk test. ΔCT values were compared using the Kruskal-Wallis one-way analysis of variance and corresponding post-hoc tests. Association between parameters was tested using the Spearman rank correlation or Mann Whitney U test where appropriate. All statistical tests were two-sided and P values <0.05 were considered significant. Analyses were performed using MedCalc Statistical Software version 16.2.0 (MedCalc Software bvba, Ostend, Belgium).

Results:

There were total of 49 patients and controls analyzed, 29 with PMF, four with SMF (three post PRV SMF, one post ET SMF) and 16 in control group. There were 31 (63%) male and 18 (37%) female patients, median age was 69 years. There were no significant differences in age or sex in target and control groups. Clinical characteristics of patients with PMF and SMF are shown in Table 1.

B-catenin relative expression differed significantly between groups (p=0.0002). B-catenin was significantly higher expressed in both patients with PMF (median ΔCT -4.65) and SMF (median ΔCT -4.27) than in control group (median ΔCT -3.39), but the expression did not differ significantly between PMF and SMF patients as shown in Figure 1.

In patients with PMF, β-catenin relative expression correlated negatively with hemoglobin level (p=0.017), but no association according to age, sex, degree of bone marrow fibrosis, the spleen or the liver size, leukocyte or platelet counts, MCV, RDW, LDH, serum iron, IDIC, transferrin saturation, ferritin or CRP was detected. Also, no association between β-catenin relative expression and JAK2 V617F mutational status was detected; JAK2 allele burden in mutated patients did not correlate with β-catenin expression (analyzed in 12 patients).

Discussion:

Present study shows for the first time that β-catenin mRNA expression is increased in patients with both primary and secondary (post Ph- MPN) myelofibrosis. We identified three previous studies investigating β-catenin expression in PMF with neither of them focusing primarily on this disease, SMF has not been investigated previously. First study was done by Serinsöüz et al13 who used qRT-PCR method to demonstrate increased β-catenin expression in PMF patients in comparison to CML but not in comparison to control group. It is to point out that mentioned study used RNA extracted from paraffin embedded bone marrow biopsies. Also, patients with reactive hyperplasia of megakaryopoiesis and/or erythropoiesis were used as control group. Second study was done by Jauregui et al14 who used immunohistochemistry to demonstrate lower expression of β-catenin in megakaryocytes of PMF and CML patients in comparison to PRV and ET. Third study was done by Geduk et al15 who used immunohistochemistry to analyze β-catenin expression in Ph- MPN subsets distinguishing expression in myeloid cells, megakaryocytes and vascular endothelial cells. They showed lower expression of β-catenin in megakaryocytes of PMF patients in comparison to ET and PRV (there was no difference between PMF and control group), no difference in β-catenin expression in myeloid cells among tested subsets and higher β-catenin expression in vascular endothelial cells of
PMF patients in comparison to PRV, ET and control group. Authors also reported positive correlation between β-catenin expression in megakaryocytes and hemoglobin level (for a whole Ph- MPN group represented with 43 ET, seven PRV and 16 PMF patients that differ in disease biology and hemoglobin levels) which is in contrast with our finding of negative correlation with hemoglobin level in pure PMF group. Our results suggest that upregulation of canonical Wnt/β-catenin signaling might potentiate anemia. This novel observation has clinical importance as lower hemoglobin levels bear adverse prognostic significance in PMF (but not other Ph- MPNs). In general, our findings are in support of previous observations that β-catenin may have important role in PMF.

It was previously shown by Liu et al that JAK2 specific blockade can decrease β-catenin expression in human acute T cell leukemia Jurkat cells and in human erythroleukemia HEL cells. This effect can be attenuated by silencing beta-TrCP with specific shRNA, identifying beta-TrCP as cross-talk gene between JAK/STAT and Wnt/β-catenin signaling pathways. Expression of β-catenin in our study shows no association with either JAK2 V617F mutational status or JAK2 V617F allele burden which is in line with previous observations regarding Ph- MPNs, suggesting that β-catenin expression could independently contribute to pathogenesis of Ph- MPNs but future studies are needed.

Canonical Wnt/β-catenin signaling is a part of larger stem cell signaling network where different cytokine signaling cascades cooperate or antagonize in a context dependent manner. The foundation of this network comprises of Wnt, FGF, Notch, TGFβ/BMP, and Hedgehog signaling cascades. Elements of the network are mutually regulated and play a central role in stem cell fate determination by governing processes of self-renewal, proliferation and differentiation which are central to fetal and adult tissues homeostasis and carcinogenesis. Number of inflammatory cytokines associated with PMF are capable of mediating their effects through increased β-catenin expression (reported in different contexts), including TGFβ1, FGF and PDGF. Accordingly, β-catenin can induce expression of number of genes implicated in processes of cell cycle control (c-MYC, Cyclin D1), fibrosis (COL1, TGFβ, ET-1, CCN2) and angiogenesis (IL-8, VEGF). Which of aforementioned interactions are relevant in pathogenesis of PMF remains to be elucidated with further studies. Since clonal proliferation associated with bone marrow fibrosis and increased angiogenesis are central features of PMF and SMF, β-catenin may represent interesting new therapeutic target in these diseases.

Conclusion:

Both PMF and SMF patients have increased β-catenin expression in their bone marrows. Activation of canonical Wnt/β-catenin signaling might potentiate anemia in PMF and may contribute to malignant and fibrogenic potential of these diseases. This could provide interesting new therapeutic targets.
Clinical Practice Points:

- Activation of Wnt/β-catenin signaling pathway promotes malignant transformation and development of fibrosis and angiogenesis.
- β-catenin contributes to pathogenesis of various hematological malignancies, including multiple myeloma and chronic myelogenous leukemia where its inhibition has been actively investigated.
- The present study demonstrated increased β-catenin mRNA expression in bone marrows of patients with both primary (PMF) and secondary myelofibrosis (SMF) developing from previous Philadelphia chromosome negative myeloproliferative neoplasm.
- Higher β-catenin expression is associated with lower hemoglobin level which bears negative prognostic significance in PMF.
- Our results are providing additional evidence for role of β-catenin in pathogenesis of PMF and SMF which may help in recognizing new therapeutic targets in these diseases.
Acknowledgements: The data used in this study are part of the PhD thesis of the first author.

Literature:

Table 1. Characteristics of patients with primary (PMF) and secondary myelofibrosis (SMF). Values are presented as proportions or as median and range.

<table>
<thead>
<tr>
<th></th>
<th>PMF</th>
<th>SMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>Sex</td>
<td>19 / 29 (66%) males, 10 / 29 (34%) females</td>
<td>2 / 4 (50%) males, 2 / 4 (50%) females</td>
</tr>
<tr>
<td>Age</td>
<td>70 (55 – 81) years</td>
<td>71 (57 – 79) years</td>
</tr>
<tr>
<td>JAK2 V617F positive</td>
<td>19 / 29 (66%)</td>
<td>2 / 4 (50%)</td>
</tr>
<tr>
<td>Hemoglobin level (g/L)</td>
<td>101 (75 – 162)</td>
<td>102 (96 – 135)</td>
</tr>
<tr>
<td>WBC (x10⁹/L)</td>
<td>10.9 (2.1 – 150.6)</td>
<td>13.1 (6.9 – 22.0)</td>
</tr>
<tr>
<td>Platelet count (x10⁹/L)</td>
<td>366 (22 - 1491)</td>
<td>438 (276 - 727)</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>86.75 (69.9 – 113.9)</td>
<td>87.5 (69.1 – 118.9)</td>
</tr>
<tr>
<td>RDW (%)</td>
<td>19.55 (15.0 - 29.2)</td>
<td>20.1 (18.3 – 25.4)</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>538.5 (152 – 3400)</td>
<td>795.5 (352 – 1151)</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>5.9 (0.5 – 245.0)</td>
<td>8.7 (0.3 – 159.5)</td>
</tr>
<tr>
<td>Ferritin (mcg/L)</td>
<td>152 (10 – 10720)</td>
<td>148.5 (16 – 1427)</td>
</tr>
</tbody>
</table>
Figure 1. B-catenin mRNA expression is significantly increased in patients with primary and secondary myelofibrosis in comparison with control group (Kruskal-Wallis one-way analysis of variance, p=0.0002). Relative expression is shown as ΔCT values using abl as the reference gene. ΔCT values are plotted in reverse order for the results to be easier to view and interpret (higher expression is positioned higher in diagram). PMF: primary myelofibrosis, SMF: secondary myelofibrosis; Cont.: control group; n.s.: non significant.