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Abstract
Background: Cell tracking is a powerful tool to understand cellular migration, dynamics, homing and function of stem cell trans-

plants. Nanoparticles represent possible stem cell tracers, but they differ in cellular uptake and side effects. Their properties can be

modified by coating with different biocompatible polymers. To test if a coating polymer, poly(L-lysine), can improve the biocom-

patibility of nanoparticles applied to neural stem cells, poly(L-lysine)-coated maghemite nanoparticles were prepared and character-

ized. We evaluated their cellular uptake, the mechanism of internalization, cytotoxicity, viability and proliferation of neural stem

cells, and compared them to the commercially available dextran-coated nanomag®-D-spio nanoparticles.

Results: Light microscopy of Prussian blue staining revealed a concentration-dependent intracellular uptake of iron oxide in neural

stem cells. The methyl thiazolyl tetrazolium assay and the calcein acetoxymethyl ester/propidium iodide assay demonstrated that

poly(L-lysine)-coated maghemite nanoparticles scored better than nanomag®-D-spio in cell labeling efficiency, viability and prolif-

eration of neural stem cells. Cytochalasine D blocked the cellular uptake of nanoparticles indicating an actin-dependent process,

such as macropinocytosis, to be the internalization mechanism for both nanoparticle types. Finally, immunocytochemistry analysis

of neural stem cells after treatment with poly(L-lysine)-coated maghemite and nanomag®-D-spio nanoparticles showed that they

preserve their identity as neural stem cells and their potential to differentiate into all three major neural cell types (neurons, astro-

cytes and oligodendrocytes).

Conclusion: Improved biocompatibility and efficient cell labeling makes poly(L-lysine)-coated maghemite nanoparticles appro-

priate candidates for future neural stem cell in vivo tracking studies.
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Table 1: Characterization of the iron oxide nanoparticles.a

Dn (nm) Dw (nm) PDI Dh (nm) CC RG

PLL-γ-Fe2O3 10.8 ± 3 13.2 1.23 220 0.91 ± 0.05 1 ± 0.02
Nanomag®-D-spio 8.1 ± 4 13.0 1.61 100 0.82 ± 0.13 1.1 ± 0.04

aDn: number-average diameter (TEM), Dw: weight-average diameter (TEM), Dh: hydrodynamic diameter (DLS), PDI: polydispersity index, CC: circu-
larity and RG: roughness.

Introduction
Stem cell-based therapy is a developing area of regenerative

medicine with an expected impact on the treatment of brain

diseases for which there is no adequate treatment yet. Neural

stem cells (NSCs) have a high self-renewal ability as well as the

ability to differentiate into neurons, astrocytes and oligodendro-

cytes, three principal cell types of the central nervous system

[1]. The transplantation of NSCs represents a possible strategy

for replacing cell loss in patients suffering from different neuro-

logic diseases such as stroke, spinal cord injury, Alzheimer’s

disease or amyotrophic lateral sclerosis [2-7]. The development

of non-invasive techniques to follow the stem cells through

their migration, distribution, proliferation and differentiation is

an essential prerequisite to characterize the biology and behav-

ior of stem cells, to design the therapeutic approaches and mini-

mize possible side effects [8-10]. Magnetic nanoparticles are

widely used to track stem cells by magnetic resonance imaging

(MRI) [11], and superparamagnetic iron oxide nanoparticles are

particularly used for this purpose [12-15].

The efficient cellular uptake of nanoparticles, which would not

interfere with the labeled cell activities is crucial for reliable

cell tracking [16]. Biocompatible polymers are used to modify

the surface of nanoparticles, prevent their agglomeration and

facilitate internalization. The most widely used coating for sur-

face modification of nanoparticles is dextran, which promotes

nanoparticle internalization, in particular in different commer-

cially available transfection agents [17]. However, the transfec-

tion methods need to be optimized for each cell line to limit

cytotoxic effects of the transfection agents and increase the cel-

lular uptake of nanoparticles [15,17]. Recent studies indicate

advantages of PLL coating in comparison to dextran, since it is

highly biocompatible, easy to use, available on the market and

promotes internalization with highly efficiency, e.g., into

human mesenchymal stem cells [18,19]. As a positively charged

polypeptide, PLL is used for nonspecific adhesion of cells to

solid substrates through enhancing electrostatic interaction be-

tween negatively charged ions of the cell membrane and the

surface of the culture plate. Due to the presence of NH2 groups,

which promote cell adhesion, PLL is as well used as a non-viral

transfection agent for gene delivery and DNA complexation

[20]. Our previous studies showed that cell labeling efficiency

varied both due to the nanoparticle coating and cell type used

[19,21]. Therefore NSC labeling by custom made PLL-coated

nanoparticles was tested and compared to commercially avail-

able dextran-coated nanomag®-D-spio nanoparticles. For both

types of nanoparticles the labeling efficiency, cellular viability,

cytotoxicity, behavior after labeling, and the mechanism of

internalization was determined and compared.

Results
Characterization of the nanoparticle
morphology
To compare the morphology of PLL-γ-Fe2O3 nanoparticles with

commercially available nanomag®-D-spio particles, transmis-

sion electron microscopy (TEM) and dynamic light scattering

(DLS) were used (Figure 1, Table 1). The average size of the

PLL-γ-Fe2O3 nanoparticles (Figure 1A) was larger than that of

nanomag®-D-spio nanoparticles (Figure 1B). The latter parti-

cles had a broader particle size distribution due to presence of

tiny particles (Figure 1E,F). The smaller average particle size

corresponded to low intensity diffraction rings (compare insets

in Figure 1A,B). Moreover, TEM micrographs indicated differ-

ent morphologies of the nanoparticles. While the PLL-γ-Fe2O3

were smooth and compact, the nanomag®-D-spio particles were

flat with rough edges exhibiting a flake-like morphology

(Figure 1). The qualitative difference between the morpholo-

gies of PLL-γ-Fe2O3 and nanomag®-D-spio nanoparticles was

confirmed and quantified by image analysis showing signifi-

cant differences in all measured parameters (Table 1). While

TEM analysis was done on the dry particles, their hydrody-

namic size in water was determined by DLS, which measured

also possible particle aggregates in solution. As expected, Dh

(hydrodynamic diameter obtained by DLS) was substantially

larger than Dn (number-average diameter obtained by TEM)

and the PLL-γ-Fe2O3 particles were larger than the nanomag®-

D-spio particles (Table 1). However, both types of the particles

were colloidally stable in water for months of storage. Presence

of very small particles increased the polydispersity index PDI of

nanomag®-D-spio (Table 1). Statistical analysis confirmed that

nanomag®-D-spio particles were significantly less spherical and

had rougher edges than PLL-γ-Fe2O3. The crystal structure of

both types of the iron oxide nanoparticles was investigated
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Figure 1: Transmission electron micrographs micrographs of (A) PLL-γ-Fe2O3 and (B) nanomag®-D-spio nanoparticles. Insets show the correspond-
ing electron diffraction patterns. (C) The nanoparticle morphology was characterized by measuring morphological descriptors. Area (A) and perimeter
(P) of the analyzed particles were determined by counting the pixels using an image analysis software. Convex-Hull perimeter (C) and equivalent area
were derived auxiliary descriptors. Key morphological descriptors were equivalent diameter (ED), circularity (CC) and roughness (RG). ED deter-
mined a diameter of a circle with the same area as the measured particle. CC equaled to 1 for circles; all other shapes had CC < 1. RG of smooth
objects was 1, whereas the rough objects had RG < 1. (D) Experimental selected area electron diffraction (SAED) patterns of PLL-γ-Fe2O3 and
nanomag®-D-spio were compared to calculated X-ray diffraction (XRD) pattern of γ-Fe2O3. (E,F) Size distribution by intensity of uncoated (E) and
PLL-coated (F) γ-Fe2O3 nanoparticles.

using the experimental two dimensional selected area electron

diffraction (SAED) patterns, which were converted to one-

dimensional ones and compared with calculated X-ray diffrac-

tion patterns (XRD) of several crystalline FexOy forms

(Figure 1). The best fit was found for γ-Fe2O3. Two facts con-

cerning SAED patterns are worth mentioning: (i) The lower

diffraction intensities of nanomag®-D-spio nanoparticles were

in agreement with their lower average size, and (ii) since the

crystal structure of Fe3O4 is close to that of γ-Fe2O3, both ex-

perimental SAED patterns are similar. As a result, the analyzed

particles might be a mixture of both γ-Fe2O3 and Fe3O4.

Cell-labeling efficiency of PLL-γ-Fe2O3 was
higher than that of nanomag®-D-spio
To evaluate the uptake of nanoparticles by NSCs, Prussian blue

staining was used. Both types of nanoparticles were taken up by

the NSCs depending on concentration (Figure 2). When the

same concentration of nanoparticles (0.2 mg/mL) was used,

PLL-γ-Fe2O3-labeled cells were more intensely stained with

Prussian blue than those labeled by nanomag®-D-spio. Consid-

erably higher concentrations of nanomag®-D-spio (4.0 mg/mL)

than PLL-γ-Fe2O3 (0.02 mg/mL) were needed for similar NSC

cytoplasmic labeling.

To quantify the efficiency of cell labeling an acoustic focusing

cytometer was used. The quantification of cell labeling by

cytometry was considered superior to Prussian blue image

quantification due to the possible adherence of stain both to the

cells and to the coated dish surface. By using flow cytometry

and measuring the increase of the side scattered light (SSC) of

the laser beam, the intensity of which is proportional to the

intracellular density and therefore reflects the nanoparticle

uptake, we were able to detect the presence of nanoparticles in

NSC. The percentage of nanoparticle-positive cells was deter-

mined using the Overtone cumulative histogram subtraction

method (Figure 3). The labeling efficiencies for the PLL-γ-

Fe2O3-labeled NSCs were as follows: (4.24 ± 1.47)%

(0.002 mg/mL), (14.51 ± 2.95)% (0.02 mg/mL) and

(40.34 ± 4.34)% (0.2 mg/mL). The values for the nanomag®-D-

spio labeled NSCs were: (12.75 ± 1.72)% (1 mg/mL),

(23.03 ± 1.52)% (2 mg/mL) and (38.31 ± 1.73)% (4 mg/mL;

Figure 3). Similarly to Prussian blue staining, efficient labeling
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Figure 2: PLL-γ-Fe2O3 and nanomag®-D-spio nanoparticles labeling of NSCs. Light microscopy after Prussian Blue staining of NSCs labeled with dif-
ferent concentrations of PLL-γ-Fe2O3 (upper panel) and nanomag®-D-spio nanoparticles (lower panel) indicated the distribution of iron oxide nanopar-
ticles. Nuclear Fast Red staining showed the position of nuclei. Scale bar: 50 µm.

Figure 3: Quantitative analysis of NSC labeling of PLL-γ-Fe2O3 and
nanomag®-D-spio nanoparticles. Overtone cumulative histogram
subtraction of flow cytometry histograms of NSCs labeled with differ-
ent concentrations of PLL-γ-Fe2O3 (A) and nanomag®-D-spio (B)
nanoparticles (N = 5). The asterisk indicates a statistically significant
difference (P < 0.05) versus other concentrations of the same nanopar-
ticle.

of PLL-γ-Fe2O3 nanoparticles was reached at the considerably

lower concentration (0.2 mg/mL) compared with nanomag®-D-

spio (4.0 mg/mL).

Proliferation and viability
To define if the nanoparticle labeling had any negative effect on

NSC, treated cells were assessed with regard to viability, prolif-

eration and cytotoxicity. The MTT assay was applied to demon-

strate NSC viability and proliferation. A constant amount of

starting cells for culture was used and compared after 48 h of

Figure 4: PLL-γ-Fe2O3 nanoparticles did not affect NSC proliferation.
MTT cell viability assay of NSCs labeled with PLL-γ-Fe2O3 and
nanomag®-D-spio nanoparticles (N = 12). The statistically significant
diferences versus Control were depicted by asterisks, *: P < 0.05;
**: P < 0.005; ***: P < 0.001.

NSC proliferation in the culture. The non-treated cells were

considered as a standard showing viable and highly proliferated

cells (100% value) and compared to the treated cells (Figure 4).

For PLL-γ-Fe2O3-labeled NSCs, the values were as follows:

(102.14 ± 2.04)% (0.01 mg/mL),  (92.95 ± 1.41)%

(0.02 mg/mL), (94.22 ± 2.18)% (0.03 mg/mL), (91.72 ± 1.37)%

(0.04 mg/mL), (87.48 ± 1.69)% (0.1 mg/mL), (85.07 ± 2.43)%

(0.15 mg/mL), and (80.43 ± 1.93)% (0.2 mg/mL) (Figure 4).

The values for the nanomag®-D-spio labeled-NSCs were

(97.40 ± 3.34)% (1 mg/mL), (84.63 ± 3.13)% (2 mg/mL), and

(67.25 ± 3.10)% (4 mg/mL; Figure 4). When used at concentra-
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tions to achieve an efficient intracellular uptake of the nanopar-

ticles (PLL-γ-Fe2O3 at a concentration of 0.2 mg/mL and

nanomag®-D-spio at 4 mg/mL), PLL-γ-Fe2O3-labeled cells

showed more viable cells, (80.43 ± 1.93)%, than in case of

nanomag®-D-spio-labeled cells, (67.25 ± 3.10)%.

The CalceinAM/PI assay was used to assess the percentage of

living cells (labeled with Calcein AM) and dead cells (labeled

with PI). In contrast to the MTT assay, the obtained result was

standardized on number of stained cells. The mean number of

living cells in all tested conditions was higher than 90%. There

was no difference between PLL-γ-Fe2O3 and nanomag®-D-

spio, in particular when concentrations that enabled efficient

labeling were considered (Figure 5).

Figure 5: PLL-γ-Fe2O3 nanoparticles had low NSC cytotoxicity. Flow
cytometry analysis showed the influence of nanoparticle cytotoxicity on
the survival of NSCs labeled with PLL-γ-Fe2O3 and nanomag®-D-spio
nanoparticles (N = 4). The asterisk indicates a statistically significant
difference (P < 0.05) versus Control.

Both types of nanoparticles were internalized
in the NSCs by actin-mediated pinocytosis
To confirm the nanoparticle internalization into NSCs, TEM

was used (Figure 6). TEM micrographs demonstrated that PLL-

γ-Fe2O3 or nanomag®-D-spio labeling did not affect the NSC

ultrastructure and that both types of the nanoparticles were

internalized into the cell vesicles rather than adhering to the cell

surface (Figure 6).

To determine the mechanism of the uptake of PLL-γ-Fe2O3 and

nanomag®-D-spio nanoparticles, NSCs were treated with differ-

ent endocytotic inhibitors, incubated with nanoparticles and

subsequently, flow cytometry analysis of the labeled cells was

performed (Figure 7A,B). The inhibitors were cytochalasine D

(blocks actin-dependent process such as macropinocytosis),

nocodazole (inhibits microtubule function involved in intracel-

Figure 6: Macropinocytotic vesicle containing PLL-γ-Fe2O3 and
nanomag®-D-spio nanoparticles. Transmission electron micrographs of
NSCs labeled with PLL-γ-Fe2O3 (PLL, A, B) and nanomag®-D-spio
(NM, C, D) nanoparticles, and unlabeled controls (E, F). Arrows indi-
cate the macropinocytotic vesicles. Insets show macropinocytotic vesi-
cles. Scale bar: 1 µm.

lular vesicle trafficking), phenylarsine oxide (inhibits the

clathrin-mediated endocytotic pathway) and filipin (inhibits

caveolae pathways). Flow cytometry analysis showed that

NSCs treated with cytochalasine D and incubated with PLL-γ-

Fe2O3 or nanomag®-D-spio nanoparticles exhibited a left shift

in the cell granularity distribution compared with non-treated

control (Figure 7). No change in labeling was observed in the

phenylarsine oxide-, nocodazole- or filipin-treated NSCs when

the nanoparticles were used. This indicated that actin-depend-

ent process, e.g., macropinocytosis, was the mechanism of

nanoparticle uptake for both types of nanoparticles.

NSC progenitor post-labeling phenotype and
neural differentation potential
NSCs treated with PLL-γ-Fe2O3 and nanomag®-D-spio nano-

particles for 48 h stained positive for nestin, a marker of neural

stem/progenitor cells, same as unlabeled control cells
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Figure 9: NSCs labeled with PLL-γ-Fe2O3 and nanomag®-D-spio nanoparticles differentiate into all three major neural cell lines. Following 48 h of
nanoparticle incubation, NSCs labeled with PLL-γ-Fe2O3 or nanomag-D-spio were differentiated for 5 days and compared to the unlabeled controls.
Neurons (MAP2+), astrocytes (GFAP+) and oligodendrocytes (04+) (all red) could be identified in all conditions. Nuclear marker DAPI was stained in
green. Scale bars: 10 µm.

Figure 7: Macropinocytosis is the mechanism of cellular uptake of
PLL-γ-Fe2O3 and nanomag®-D-spio nanoparticles. The internalization
mechanism of PLL-γ-Fe2O3 (A) and nanomag®-D-spio (B) nanoparti-
cles in NSCs measured by flow cytometry of side scatter (SSC) after
treatment of NSCs with different inhibitors: phenylarsine oxide (PAO),
cytochalasin D (cytoD), nocodazole (noco) and filipin (fil).

(Figure 8), suggesting they maintain their phenotype as neural

progenitor cells. NSCs spontaneously differentiate into neurons,

astrocytes and oligodendrocytes when cultured in the absence of

growth factors FGF and EGF. Both PLL-γ-Fe2O3- and

Figure 8: Labeling NSCs with PLL-γ-Fe2O3 and nanomag®-D-spio
nanoparticles did not interfere with their stem/progenitor phenotype.
The neural progenitor identity of NSC labeled with PLL-γ-Fe2O3 and
nanomag-D-spio was confirmed by immunostaining against nestin
(green), marker of neural stem cells, after 48 h of post-labeling prolifer-
ation. Control cells were not labeled with any nanoparticles. Nuclear
marker DAPI was stained in blue. Scale bars: 10 µm.

nanomag®-D-spio-labeled NSCs differentiated as the untreated

controls, giving rise to neurons (MAP2+), astrocytes (GFAP+)

or oligodendrocytes (O4+), when induced to differentiate for

5 days (Figure 9).
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Discussion
PLL-γ-Fe2O3 nanoparticles as efficient tool
for NSC labeling
The present study showed that PLL-γ-Fe2O3 nanoparticles were

better than commercially available dextran-coated nanomag®-

D-spio nanoparticles in NSC labeling. NSCs have a great poten-

cy to regenerate the central nervous system, and are often used

as cells of choice in brain applications [2,3]. Despite a prior

positive experience of using PLL-γ-Fe2O3 nanoparticles for cell

labeling [22], the detailed analysis on biocompatibility of PLL-

γ-Fe2O3 nanoparticles was not described, neither the method of

nanoparticle cell uptake defined.

Better cellular uptake of PLL-γ-Fe2O3 nanoparticles, when

compared to nanomag®-D-spio was similar to previous results,

in which a higher particle uptake by mesenchymal stem cells in

contrast to lower uptake of Endorem commercial dextran-

coated nanoparticles was revealed [19]. The optimal molecular

weight of PLL was necessary for obtained labeling efficiency

and biocompatibility [19,21]. The optimal concentration of

PLL-γ-Fe2O3 for labeling of NSCs was 0.2 mg/mL, which is

considerably less than the concentration of dextran-coated

nanomag®-D-spio (4 mg/mL) needed to achieve the same

labeling efficiency. Moreover, at the optimal labeling concen-

tration of PLL-γ-Fe2O3 nanoparticles (0.2 mg/mL), the in vitro

biocompatibility was satisfactory. No detrimental effect on

viability or proliferation of NSCs was observed, as compared

with unlabeled control cells. Contrarily to that, the efficient

concentration of nanomag®-D-spio (4 mg/mL) needed to

achieve cell labeling, scored low (<80%) in a cell proliferation

rate as compared with control unlabeled cells. To achieve the

same labeling efficiency it seems that dextran-coated

nanomag®-D-spio nanoparticles would require the addition of a

transfection agent to promote internalization [23]. In addition,

immunocytochemistry analysis of NSCs labeled with PLL-γ-

Fe2O3 and nanomag®-D-spio nanoparticles suggested that they

do not lose their neural stem cell identity and keep their poten-

tial to differentiate into all three major neural cell type (neurons,

astrocytes and oligodendrocytes). PLL coating of nanoparticles

thus provides an excellent opportunity for a safe and natural

internalization of nanoparticles by NSCs.

Macropinocytosis as a way of PLL-γ-Fe2O3
nanoparticle internalization
Proper internalization of iron particles is essential, since the par-

ticles can adhere to the cell surface thus exhibiting possible

nanotoxic effects to the cell environment [24]. Endocytosis as a

process of internalization of foreign materials can be divided

into two major groups, phagocytosis for larger particles and

pinocytosis for nanoparticles. Pinocytosis can be further subdi-

vided depending on the size of particles into clathrin-mediated,

caveolae, and macropinocytosis [25]. To determine which of the

endocytotic pathway was involved in NSC uptake of PLL-γ-

Fe2O3 and nanomag®-D-spio nanoparticles, several inhibitors

related to different endocytotic pathways were tested by their

incubation with NSCs prior to nanoparticle addition. These in-

hibitors included the inhibitor of actin-dependent process

macropinocytosis cytochalasine D, inhibitor of microtubule

function involved in intracellular vesicle trafficking nocodazole,

inhibitor of the clathrin-mediated endocytosis phenylarsine

oxide and filipin, which blocks caveolae pathways [25]. Our

results suggested that the internalization of both types of the

nanoparticles occurred via macropinocytosis as confirmed by

TEM. Recently, PLL-γ-Fe2O3 agglomeration properties were

studied in biological cell culture media with or without common

serum protein, which showed the increase of size and negative

ζ-potential in comparison to ultrapure water [26]. Similarly to

the other studied nanoparticles, the observed changes were less

pronounced in coated than in uncoated particles, and in the

presence of serum protein than in its absence. Subsequently, the

micropinocytosis could be the ideal cellular mechanism to inter-

nalize the range of particle sizes and properties presented to the

cell in the culture conditions. Although the mechanism of nano-

particle internalization was the same for both nanoparticles

analyzed, better labeling efficiency and biocompatibility makes

PLL-γ-Fe2O3 nanoparticles an attractive option for future in

vivo cell tracking studies.

Conclusion
Poly(L-lysine) (PLL) polymer improved the labeling efficiency

and biocompatibility of nanoparticles applied to neural stem

cells (NSC). When compared to commercial dextran-coated

nanomag®-D-spio nanoparticles, PLL-coated maghemite nano-

particles (PLL-γ-Fe2O3) excelled in labeling efficiency,

viability and proliferation of NSCs without influencing their

neural stem cell identity and differentiation potential. PLL-γ-

Fe2O3 nanoparticles could be considered as appropriate candi-

dates for future neural stem cell in vivo tracking studies.

Experimental
Nanoparticles
Nanomag®-D-spio was purchased from Micromod Partikeltech-

nologie (Rostock, Germany, catalog number 79-00-102). PLL-

γ-Fe2O3 nanoparticles were prepared by chemical coprecipita-

tion of Fe(II) and Fe(III) chlorides, oxidation with sodium

hypochlorite to maghemite (γ-Fe2O3) and post-synthesis PLL

coating, which was confirmed by FTIR spectroscopy [19,27]. In

short, 12 mL of 0.2 M FeCl3 solution was mixed with 12 mL of

0.5 M NH4OH solution under sonication (Sonicator W-385;

Heat SystemsUltrasonics, Inc., Farmingdale, NY, USA) for

2 min at room temperature to form colloid Fe(OH)3. Under

sonication 6 mL of aqueous 0.2 M FeCl2 was added and the
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mixture poured into 36 mL of 0.5 M NH4OH. The formed mag-

netite coagulate was left to grow for 15 min, after which it was

magnetically separated, repeatedly washed with ultrapure water

and passed through a 0.22 µm PTFE Millex membrane filter

(Millipore) to remove all impurities remaining after the synthe-

sis. Under sonication 1.5 mL of 0.1 M sodium citrate was

added, after which magnetite was oxidized by addition of 1 mL

of 5% sodium hypochlorite solution. To coat nanoparticles

0.2 mL of aqueous poly(L-lysine) solution (1 mg/mL) was

added dropwise with stirring to 10 mL of primary iron oxide

colloid, diluted to a concentration of 2.2 mg iron oxide/mL.

The obtained mixture was sonicated for 5 min and used in the

experiments.

Characterization of nanoparticles
Morphology of the particles was evaluated by transmission

electron microscopy (TEM). Samples were prepared by drop-

ping 2 μL of nanoparticle suspension on a carbon-coated copper

grid. The suspension was left to equilibrate for 60 s, and water

was removed by touching the bottom of the grid with a narrow

strip of filtration paper. This cleaned the soluble impurities and

prevented the crystallization of inorganic salts on the surface of

the carbon film. The particles were dried at room temperature

for more than 1 h, and TEM micrographs were obtained at an

accelerating voltage of 120 kV by Tecnai Spirit G2 (FEI, Brno,

Czech Republic). Bright field imaging (BF) and selected area

electron diffraction (SAED) were used to visualize nanoparticle

morphology and to identify crystal structure, respectively.

Micrographs were processed by image analysis program NIS

Elements (Laboratory Imaging, Prague, Czech Republic). More

than 100 particles were segmented in each experiment using

automated edge detection. Each particle was characterized by

six morphological descriptors, namely area, perimeter, Convex-

Hull perimeter, equivalent diameter, roughness and circularity

(Figure 1C). To further characterize the particle size distribu-

tion, number-equivalent diameter (Dn), weight-average diame-

ter (Dw) and polydispersity index (PDI) were calculated accord-

ing to Equations 1–3, where ni is number of particles in class

interval i with diameter Di [19]:

(1)

(2)

(3)

The hydrodynamic diameter (z-average) was determined by the

cumulative analysis of time correlation functions from dynamic

light scattering (DLS) using an Autosizer Lo-C (Malvern

Instruments Ltd., Malvern, Great Britain). The agglomeration

properties and the surface charge properties of PLL-γ-Fe2O3

nanoparticles in biological cell culture medium with and

without addition of common serum protein were previously

described [26].

The crystal structure of both types of nanoparticles was investi-

gated using the experimental two dimensional selected area

diffraction (SAED) patterns, which were converted to one

dimension and compared to calculated X ray diffraction patterns

(XRD) of several crystalline FexOy forms. Phase composition

and size of the particles by X-ray powder diffraction was previ-

ously described [27].

Animals
To obtain neural stem cells, wild type C57Bl/6NCrl mice were

used. All animal procedures were approved by Internal Review

Board of the Ethical Committee of the School of Medicine,

University of Zagreb, and were in accordance with the Ethical

Codex of Croatian Society for Laboratory Animal Science. All

experiments were carried out in accordance with the EU Direc-

tive 2010/63/EU on the protection of animals used for scientific

purposes.

Neural stem cell culture
Neural stem cells (NSCs) were isolated from pregnant female

mice as previously described [28,29]. Briefly, at gestation day

14.5, embryos were isolated and the telencephalic wall was

microdissected and dissociated using StemPro Accutase (Life

Technologies). Cells were maintained at 37 °C in a humidified

atmosphere with 5% CO2/95% O2. Expansion medium

contained DMEM/F-12 with GlutaMAX, 1% N2, 2% B27,

1% penicillin/streptomycin, epidermal growth factor (EGF)

20 ng/mL and fibroblast growth factor (FGF) 10 ng/mL (all Life

technologies). The neurospheres were dissociated and plated on

24-well plates at cell density of 4 × 104 NSC/well (for methyl

thiazolyl tetrazolium (MTT) experiments) and 6-well plates at

2 × 105 NSC/well (for Prussian blue, TEM and flow cytometry

experiments). All plates were previously coated for 12 h with

50 µg/mL poly(D-lysine) (PDL) water solution (Sigma-

Aldrich).

NSC labeling with nanoparticles
Twenty-four hours after NSC plating, the nanoparticles were

added directly to the culture medium and incubated for 48 h.

PLL-γ-Fe2O3 nanoparticles were used in the following concen-

trations: 0.002, 0.01, 0.02, 0.03, 0.04, 0.1, 0.15 and 0.2 mg/mL.

Nanomag®-D-spio nanoparticles were used in the following

concentrations: 0.002, 0.02, 0.2, 1, 2 and 4 mg/mL. The nano-

particles were not added to the control (unlabeled) cells.
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Prussian blue staining
After labeling, nanoparticles were removed, cells were washed

three times with phosphate buffered saline (PBS), fixed with

4% paraformaldehyde (Sigma-Aldrich) for 20 min, and stained

with a 1:1 mixture of 10% K4Fe(CN)6 (Sigma-Aldrich) and

20% HCl for 20 min. Cells were counterstained with

0.1% Nuclear Fast Red (Sigma-Aldrich) for 1 min, mounted

with HistoMount (Invitrogen) and covered using coverslip.

After drying, the cells were analyzed under bright field using

light microscope (ECLIPSE E200, Nikon Instruments, Japan).

MTT cell viability assay
After NSC labeling MTT (methyl thiazolyl tetrazolium, 3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)

(Sigma-Aldrich) was added to the medium at a concentration of

0.5 mg/mL and incubated for 45 min at 37 °C under 5% CO2.

The formazan crystals formed in the cells were dissolved in

DMSO and the absorbance (A) was measured at 595 nm using a

Microplate reader (680 XR, Bio-Rad Laboratories, Japan). MTT

data were expressed as percentage of the average absorbance

values of the labeled cells (sample), compared to the non-

labeled cells (control) according to Equation 4:

(4)

Flow cytometry
For the nanoparticle cytotoxicity, evaluation of nanoparticle

uptake efficiency and defining the mechanism of nanoparticle

uptake by NSCs, an Attune® acoustic focusing flow cytometer

(Applied Biosystems, USA) containing a 488 nm laser, a

forward-scatter (FSC) light diode detector and a photomulti-

plier tube of the side-scattered (SSC) light detector was used.

The cytometer was set up to measure FSC linearly and SSC

logarithmically. After labeling the NSCs were dissociated with

StemPro Accutase (Life Technologies) cell dissociation reagent,

washed with PBS, resuspended in PBS containing 2% FBS and

2 mM EDTA (pH 7.4) and passed through a 40 µm Falcon™

cell strainer (Fisher Scientific).

To determine the nanoparticle cytotoxicity the calcein acetoxy-

methyl ester/propidium iodide (CalceinAM/PI) assay was

applied. Dissociated cells were incubated with 0.1 µM

calceinAM and 5 ng/mL PI (both Invitrogen). The percentage of

alive calceinAM-positive and PI-positive NSCs was analyzed

using Attune acoustic focusing cytometer and calculated using

FlowJo vX.0.7 software.

To determine the nanoparticle uptake efficiency, the percentage

of nanoparticle-labeled cells was determined using Attune

acoustic focusing cytometer by measuring the increase of the

side scattered light of the laser beam (SSC). The intensity of the

SSC is proportional to the intracellular density [30]. The per-

centage of positive cells was determined with FCS Express 4

software (De Novo Software, Glendale, USA) using Overton

cumulative histogram subtraction method [31].

To determine the mechanism of nanoparticle uptake, NSCs

were pre-treated with inhibitors of endocytosis for 30 min and

then incubated with nanoparticles for 48 h in the presence of the

inhibitor [25]. The inhibitors were phenylarsine oxide (12 nM),

cytochalasin D (60 nM), nocodazole (20 nM) and filipin

(0.3 µg/mL; all from Sigma). The effect of inhibitors on cellu-

lar nanoparticle uptake was examined using an Attune acoustic

focusing cytometer.

Transmission electron microscopy of
nanoparticle-labelled NSCs
After labeling, the cells were detached from the surface by

10 min treatment with StemPro Accutase reagent, washed once

with DMEM/F-12 medium, separated by centrifugation and

fixed overnight with 2% glutaraldehyde in 0.1 M phosphate

buffer, post-fixed in 1% osmium tetroxide, and contrasted in

2% uranyl acetate in water. The samples were dehydrated in

acetone and embedded in resin Durcupan (Sigma Aldrich). The

ultrathin sections were cut on RMC Power Tome XL (Boeck-

eler Instruments, USA) ultramicrotome, contrasted with uranyl

acetate and lead citrate and examined on TEM 902A (Zeiss,

Oberkochen, Germany).

Immunocytochemistry analysis
Immunocytochemistry was used to address whether labeled

NSC maintain their neural progenitor phenotype as well as their

neural differentiation potential. In order to confirm the progen-

itor identity of NSCs labeled with PLL-γ-Fe2O3 or nanomag®-

D-spio nanoparticles, NSCs were grown on PDL/laminin-

coated glass slides for 24 h, labeled with nanoparticles for 48 h

and left to proliferate for additional 48 h in fresh media with

FGF and EGF. In order to address their differentiation potential,

NSCs were grown on PDL/laminin-coated glass slides for 24 h,

labeled for 48 h with PLL-γ-Fe2O3 or nanomag®D-spio nano-

particles and allowed to differentiate in fresh media without of

FGF and EGF for 5 days.

In both cases, NSCs were fixed in 4% paraformaldehyde for

20 min at room temperature and washed three times with PBS.

Glass slides with NSCs were incubated over night at 4 °C in one

of the following primary antibodies: monoclonal rat anti-Nestin

(1:200; Millipore), polyclonal chicken anti-MAP2 (1:10000,

Abcam), polyclonal chicken anti-GFAP (1:250; Abcam) and

monoclonal mouse anti-O4 (1:50; Millipore). After washing
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three times with PBS, glass slides with NSCs were incubated

for 2 h at room temperature with the following secondary anti-

bodies: goat anti-mouse Alexa Flour 488 (1:500; Invitrogen),

goat anti-mouse Alexa Flour 546 (1:500; Invitrogen) and goat

anti-chicken Alexa Flour 546 (1:500; Invitrogen). All glass

slides were counterstained with DAPI (250 ng/mL; Roche),

mounted using a Fluorescence Mounting Medium (Dako) and

examined using a confocal microscope (Leica SP8 X FLIM,

Germany).

Statistical analysis
For statistical analyses ANOVA with Dunnett’s method for

multiple comparisons was used. Data were presented as mean

values ± SEM (standard error of the mean). A probability value

P < 0.05 was considered significant.
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