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Abstract 

In process of placentation, expression of various glycoproteins has important role in 

embryonal development. Alterations of DNA methylation caused by 5-azacytidine 

(5azaC) can disturb normal glycoproteins expression as well as proliferative ability of 

trophoblast cells. In order to assess that, a single dose of 5azaC was injected 

intraperitoneally to pregnant rats during the day 1 to 19 of gestation. Animals were 

sacrificed on the day 20 and placental weights as well as glycoprotein composition 

were analyzed together with immunohistological assessment the of degree of 

trophoblast cells proliferation. The placental weight was found significantly smaller in 

animals treated by 5azaC on the days 4 to 14 of gestation (p<0.01, Student’s t test). 

The treatment on days 4, 5 and 6 resulted in the lack of labyrinth with the strong 

proliferative activity of the cells in the basal layer. Expression of glycoproteins with 

molecular mass smaller than 60 kD was reduced on day 6. The 5azaC treatment 

from day 7 to 10 completely disturbs placental structure and the proliferation of 

trophoblast cells is poor. During these days GP70 exhibits stronger expression in the 

treated animals, contrary to GP40 which is stronger in controls. Natural border 

between labyrinth and the basal layer was established on the days 11 and 12. The 

basal layer is dominant with lower proliferation of trofoblast cells compared to the 

controls. With establishment of labyrinth on the day 13, the expression of GP40 was 

restored. Proliferation of trophoblast cells from day 13 to 15 was higher compared to 

the controls. The changes of placental mass, proliferative ability of trophoblast cells 

in rat placenta exposed to 5azaC, represents another proof of the importance of 

epigenetics in regulation of placental development. 

 

 

Keywords: Rat; Placenta; Glycoproteins; PCNA; 5-azacytidine  



 3

INTRODUCTION 

 

Normal embryonic human development is considered as one among contemporary 

medicine hottest topics. It is impossible to imagine such development without 

synchronized cooperation of embryo and placenta [1]. 

The rat placenta represents one of the most convenient models for study of the 

molecules and their interactions in processes of human implantation and 

placentation. It resembles the human placenta in its many characteristics [2]. While 

the human placenta is villous, the rodent placenta is of labyrinth type, but both of 

them are haemochorial [3].  

Any deviation in gene expression can bring about the significant changes of the 

placenta, being potentially important for ongoing pregnancy [4]. Considering 

mammals, gene expression in most cases is epigenetically regulated [5]. The 

modification of mammalian DNA molecule may consequently change the gene 

expression at the level of transcription being called DNA methylation [6]. Numerous 

genes whose methylation appears to be crucial for normal development of 

mammalian placenta are known. Mash2 is one of them. It is responsible for coding 

the transcription factor and it is indispensable for the maintenance of trophoblast 

stem cells [7]. The methylation process is of significant importance for development 

of the rat placenta. The placental basal layer displays different pattern of methylation 

from labyrinth layer, suggesting that the normal differentiation of placenta is regulated 

by precise mechanisms of DNA methylation [8].  

In order to investigate the influence of hypomethylation on development of the rat 

placenta we used demethylating agent 5-azacytidine (5azaC). 5azaC inhibits 

postreplication methylation by its incorporation into DNA which causes subsequent 

inhibition of DNA methyltransferase and loss of methylation followed by change in 

gene expression. In this study we analyzed possible changes in placental weight, 

proliferative ability of trophoblast cells and glycoprotein expression keeping in mind 

that glycoprotein expression pattern in human placenta is consistent with a potential 

role in implantation and placentation [9].  
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MATERIALS AND METHODS 

 

During the study period (from year 2000 to 2005), we analyzed 1278 rat placentas. 

Study was approved by Ethical committee, School of Medicine, University of Zagreb. 

All placentas were analyzed in the laboratory of Department of Biology.  

 

Placental samples 

Adult Fischer female rats (three-month-old) were mated overnight with males of the 

same age. Vaginal plug designated day 0 of pregnancy. Two groups of animals (3 

animals in each group) were established for each day of gestation (from day 1 to 19); 

one was treated with 5azaC (Sigma-Chemie, Deisenhofen, Germany) (study group), 

and the control group was treated only with phosphate buffer saline (PBS). 5azaC 

dissolved in PBS was administered to rats in study group by single intraperitoneal 

injection at concentration of 5mg/kg of body weight. Animals were sacrificed at day 

20 of gestation. Immediately after isolation, placentas were weighted and frozen in 

liquid nitrogen for storage at -800 C for further analysis.  

 

Western blotting 

Glycoprotein pattern was analyzed by Western blotting with SNA, UEA-I, PHA-E and 

DBA lectins (Vector, Burlingame, CA, USA), at the days of gestation where placental 

weight differences between treated and control animals were found; as well as in 

placentas whose growth was not influenced by 5azaC (i.e. day 3, 15 and 17). 

Placentas were mechanically homogenized (at least 2 placentas from the same 

animal in each sample) in homogenization buffer (50 mM Tris HCl, pH 7,5; 100 mM 

NaCl; 1 mM EDTA) containing 1mM phenylmethylsulphonyl fluoride. The 

homogenates were centrifuged at 15000g for 10 minutes (4oC) and supernatants 

were stored at -800 C. Measuring of protein content was performed by Lowry assay 

method. Gel electrophoresis of glycoproteins was performed in concentration 

gradient polyacrylamide gels (5-15 %) containing 0,1% sodium dodecylsulfate (SDS, 

Sigma, St. Louis, MO, USA) according to Laemmli (SDS-PAGE). The protein 

samples were dissolved in sample buffer (pH 6,8, Tris HCl 50mM, glycerol 10%, β-
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mercaptoethanol 5%, SDS 2%, bromphenol-blue 0,1% in distilled H2O) in ratio 1:1. 

Samples were denaturized for 5 minutes at 950C before further analysis. 40µg of total 

proteins per slot was used, with constant current of 40 mA. Molecular weight protein 

markers were loaded simultaneously.  

After electrophoresis, proteins were transferred to the PVDF immobilion membrane 

(Millipore – Bedford, MA, USA) by the semidry blotting system (Pharmacia, Sweden) 

in the semidry buffer (Tris HCl 48 mM, glycin 39 mM, SDS 1,4 mM, methanol 20%) 

[10]. Blotting was carried out at 0,8 mA/cm2 during a period of 60 minutes. After 

blotting, the part of PVDF membrane with protein markers was separated (SDS-

PAGE, SDTS, low range, Bio Rad Lab, Hercules, CA, USA) and the rest of the 

membrane was blocked overnight with 3% bovine serum albumin (pH 7,5). 

Membrane was incubated with biotinylated lectins (PHA-E, UEA-I and DBA) in lectin 

buffer (MgCl2 1 mM, CaCl2 1 mM in TBS). Lectin-glycoprotein complexes were 

detected with streptavidin-alkaline phosphatase conjugate, and visualized with BCIP 

(5-bromo-chloro-3-indolyl phosphate) and nitro blue tetrazolium (NBT, Sigma, St. 

Louis, MO, USA) [11]. 

 

Histology and immunohistochemistry 

Placental samples were immersed in a fixative solution containing 4% 

paraformaldehide at 40C. After fixation and dehydration, the specimens were 

transferred to paraffin, sectioned in 5 µm slices, deparaffinized and stained with 

haematoxylin and eosin. Serial sections were put on silanized slides (S 3003; Dako, 

Glostrup, Denmark) and air-dried for 24 hours at room temperature. Sections were 

routinely deparaffinized and placed in a jar filled with PBS (pH=7,4). Prior to 

application to the specimens, primary antibody was diluted with 0,05 mol/dm3 Tris-

HCl buffer, pH=7,6, containing 1% bovine serum albumin and labeled by mixing for 

15 minutes in a solution with the biotinylation reagent, a modified biotinylated anti-

mouse immunoglobulin. The blocking reagent (normal mouse serum in Tris-HCl 

buffer containing carrier protein and 15 mmol/dm3 sodium azide) was added for 5 

minutes to the mixture to inhibit the appearance of endogenous signal. Monoclonal 

Mouse Anti-PCNA, Clone PC10 (M 0879, DAKO) was diluted to 1:100. Negative 

control was performed by omitting the step of incubation with primary antibodies. 



 6

DAKO Animal Research kit (Peroxidase) was used for primary antibody visualization 

according to the manufacturer's instructions. Haematoxylin was used for 

counterstaining. The slides were covered with 50% glycerol in PBS. 

 

Quantitative stereological analysis of numerical density (Nv) 

Randomly selected paraffin blocks of the placenta were selected for stereological 

analysis. In order to evaluate immunohistochemistry Proliferating Cell Nuclear 

Antigen (PCNA) positive cells, five consecutive sections of the placenta were taken in 

a random fashion from each series. Quantitative stereological analysis of numerical 

density (Nv) was performed by Nikon Alphaphot binocular light microscop (Nikon, 

Vienna, Austria) using Weibel’s multipurpose test system with 42 points (M 42) at 

magnification of 400x [12]. The area tested (At) was 0,0837 mm2. For each 

investigated group the orientation/pilot stereological measurement was carried out in 

order to define the number of fields to be tested [12]. The numerical density of 

PCNA-positive cells was determined according to the point counting method [12]. 

Numerical density (Nv) was calculated by formula: Nv=N/At x D, where N is number 

of PCNA-positive cells on tested area [13,14]. The mean tangential diameter (D) 

calculated by light microscopy at magnification of 400x and for 300 cells was 

0,015mm. The giant trophoblast cells were not counted. 

 

Outcome measure and data analysis 

The primary outcome measure was the placental weight difference between control 

group and group treated by 5azaC at different days of gestation from day 1 to 19. 

Secondary outcome measures were the comparison of placental proteins 

glycosylation pattern between treated placenta (study group) and controls, and finally 

correlation and immunohystochemical analysis of PCNA-positive trophoblast cells. 

The statistical analysis of placental weight comparing study and control group was 

performed using Student’s t test. The stereological data for PCNA-positive cells were 

evaluated by descriptive statistics. Distribution of the data was assessed by 

Kolomgorov-Smirnov test, Lilliefors test and Shapiro-Wilks W-test. The homogenicity 

of the variance was tested by Lavens test. Differences in numerical density of PCNA-

positive cells in investigated groups were analyzed with multiple analysis of variance 
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(MANOVA) with the post hoc LSD test. Statistical significance was set at p <0.05. 

Statistical analyses were performed using STATISTICA 6,0 software (Stat Soft, 

Tulsa, USA).  
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RESULTS   

 

Totally 117 rats were included in the study. Among them 58 were treated by 5azaC 

(49.6%) and 59 were used as control group (50.4%). Final results were based on 610 

placentas treated by 5azaC and 668 controls. 

 

Placental growth after treatment with 5-azacytidine 

Significantly smaller placentas were found when 5azaC was administered from the 

day 4 to 14 (inclusive) of gestation (Fig. 1) (p<0.01, Student’s t test). Before the day 4 

and after the day 14 there were no significant weight differences between treated and 

control placentas (Student’s t test, p<0.01). Placental weights of female rats treated 

on the day 5 of pregnancy equaled to 59.5% weight of the untreated control 

placentas; all those treated on the day 8 of pregnancy equaled to 25.4% weight of 

controls; those treated on the day 9 of pregnancy were only 13.2% weight of control 

placentas, while placentas from animals treated on day 11 amounted to 15.7% 

weight of controls. Finally those placentas from animals treated on the day 13 of 

pregnancy regained the 80.3% of the weight of untreated control placentas. 

 

Comparison of placental proteins glycosylation pattern between treated placentas 

and controls  

No differences in placental glycoprotein pattern/composition were found when 

animals were treated with 5azaC at days 5 and 14, but significantly smaller placentas 

were found in this group. On the other hand, in placentas treated with 5azaC on the 

day 6, absence of glycoproteins with molecular mass under 60 kD was found. The 

only exception was the presence of GP 34, showing the same intensity in treated and 

control placentas (Fig. 2 a). Using lectin SNA we detected a novel glycoprotein GP70 

in placentas treated with 5azaC on the day 7 of gestation, and glycoprotein GP40 

with stronger expression in control samples (Fig. 2 b). Analyses carried out on 

placentas treated on day 8 of gestation displayed similar GP70 pattern as observed 

at day 7 (Fig. 2 c). 5azaC treatment on day 9 of gestation resulted in GP40 

expression only in control samples, while GP70 was present in those treated by 
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5azaC (Fig. 2 d). After administration of 5azaC at day 10, GP40 was still restricted 

only to controls (Fig. 2 e). However, after the administration at day 11, expression of 

GP40 was stronger in controls and GP70 in treated animals (Fig. 2 f). A similar 

pattern of GP70 was found at the day 12 of gestation (Fig. 2 g). Finally, 

administration of 5azaC on the day 13 resulted in nearly complete absence of GP40 

in controls. However it was found in treated placentas (Fig. 2 h).  

 

Histological, immunohistochemical and stereological analysis of placentas treated 

with 5azaC 

The polynomial of fifth degree created by using the method of least squares best 

describes changes of the mean values of Nv by assessed days of gestation (Fig. 3 

A). Multivariate analysis of variance (MANOVA) presented that the difference 

between the mean Nv values is highly significant (F= 250,76, p < 0,0001). 

The significance between the mean Nv values of the analyzed groups was tested by 

LSD test (post hoc analysis). The differences between Nv of all investigated groups 

compared to the controls are statistically highly significant (LSD, p< 0,0001). The 

mean values of Nv after the application of 5azaC between day 4 and 6 are 

statistically significant (LSD, p = 0,045), while between day 5 and 14, between day 5 

and 15 and between day 8 and 11 those values were not statistically significant. The 

differences between mean Nv are statistically highly significant between all other 

groups. (LSD, p< 0,0001).  

Clearly visible border between the two main parts of rat placenta (the basal layer and 

the labyrinth) was found in control group. The labyrinth layer was prominent (Fig. 5 

D). However, in placentas treated with 5azaC at the days 4,5 and 6, no labyrinth 

layer was identified (Fig. 4). Although significantly smaller, those placentas showed 

significantly higher proliferation rate compared to controls (positive PCNA nuclei 

found in numerous trophoblast cells; LSD, p<0,0001). The same demethylating agent 

applied to animals from day 7 to day 10 of gestation completely disturbs the placental 

structure, with no recognizable labyrinth layer. Intranuclear PCNA signal was 

significantly very poor when compared to controls (LSD, p<0,0001). The 

determination of numerical density was performed on the day 8 on treated animals 

only. Placentas treated on day 7 and 10 had completely disturbed structure and there 
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was no PCNA signal at all, while on the day 9 there was only one PCNA positive 

placenta. Therefore the statistical analysis was impossible (Fig. 5 A - C). 

Application of 5azaC at day 11 and 12 of gestation demonstrated recurrent 

establishment of natural border between these two layers although compared to 

controls labyrinth was significantly reduced with predominant basal layer. 

Proliferation detected with PCNA was significantly higher compared to previous days 

but still not comparable to controls (LSD, p<0,0001) (Fig. 6 A, B). The characteristic 

relationship of the basal and the labyrinth layer appears to be present only when 

5azaC was applied on the days 13, 14 and 15, with positive intranuclear PCNA signal 

present in both, trophoblast and in the giant cells (Fig. 6 C). However, numerical 

density (Nv) of PCNA-positive cells was significantly higher than in the control group 

(LSD; p<0,0001). 
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DISCUSSION 

The role of DNA methylation in growth and differentiation of the rat placenta with 

special emphasis on glycoprotein expression is opening a new field in reproductive 

biology. The glycoproteins are crucial molecules during the process of placentation. 

In this work we wanted to emphasize the necessity in combination of different areas 

of molecular biology epigenetic and glycoproteomic, both being of particular interest 

for the scientists in recent years. 

The pioneering experiments of Solter and McGrath [15] significantly contributed to 

the positioning of epigenetic, making it specifically interesting for many of scientists 

involved in the technology of cloning and methods of assisted reproduction. As well 

as that, upon the discovery of lectins, the proteins which recognize specific groups of 

sugars, glycoproteomics flourished as the special branch of glycobiology which is 

well documented by original research papers in this field [16]. 

The lack of knowledge of the development of human placenta (17) together with the 

fact that placentation disturbances representing the origin for many diseases related 

to pregnancy may potentially explains the relative low fertility in humans compared to 

some other mammalians. The trophoblast cells, being a crucial for placental 

development, display a very specific behavioral pattern of invasiveness resembling 

the tumor cells in some of their life characteristics. The key difference between two of 

them is defined by spatial and temporal limitation of trophoblast cells [18]. 

By interruption of normal methylation pattern using demethylating agent 5azaC, we 

followed several parameters of rat placenta development including: placental weight, 

expression of glycoproteins, appearance of the two main layers (the basal and the 

labyrinth), and the degree of cell proliferation. 5azaC was applied to animals in study 

group at different days of gestation, in order to cover the pregnancy from day 1 to 

day 19 assessing the importance of methylation in each day of gestation. 

The analysis of placental weight after the application of 5azaC to pregnant rats at 

different stages of gestation showed a significantly reduced weight in study 

compared to the control group. Weight of placenta from pregnant rats treated on 

days 4 to 14 of pregnancy were significantly smaller when compared to the untreated 

control group (p<0.01). It has been shown that experimentally induced 

hypomethylation, has a far more serious impact on embryonic tissue development 
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compared to extraembryonic one. However, the impact of hypermethylation is directly 

opposite to that [19]. Also, the development of placenta is less affected by 

experimentally induced mutations in Dnmt1 gene, as opposed to the heavy damages 

in embryonic tissues in those mutants [20]. Hypomethylation of the imprinted genes 

does not lead necessarily to their reactivation, because they are additionally silenced 

through the histone modification. So it was postulates that the imprinting mechanism 

is much more stable, particularly when the extraembryonic tissues are involved [21].  

Treatment with 5azaC in study group from day 1 to day 3 day of gestation did not 

influence the growth of placenta assessed by placental weight. Before day 4 the 

preimplantation embryo shows the lowest degree of methylation. The process of de 

novo methylation and simultaneous epigenetic reprogramming of the genome starts 

from day 5 onward [22]. As a consequence of that treatment with 5azaC from day 4 

resulted in statistically significant reduction in placental weight; however no difference 

in glycoprotein composition was noted with any of the lectins.  

Application of 5azac on day 6 of pregnancy results in many differences between 

placentas in study compared to control group. The Western-blot analysis found that 

the glycoproteins with the molecular mass of less than 60 kD displayed reduced 

glycosylation in the study group samples. They were barely recognizable with all 

observed lectins. PHA-E lectin reacts with endothelial cells of the fetal blood vessels 

and it is particularly strong in labyrinthine layer [23]. The histology of analyzed 

placentas presented almost totally devoid of labyrinth with dominant basal layer if 

5azaC was administered on day 6. Therefore we can conclude that glycoprotein 

pattern appears to be so poor. The degree of proliferation of these cells in basal layer 

was exceedingly high, pointing a question about gene affection during our application 

of 5azaC resulting in the absence of labyrinth development. We believe that 

inactivation of the gene Gcm1 is involved in this reaction. Gcm1 codes the 

transcription factor responsible for initiation of choryoallantoic ramification in healthy 

individuals and it is a precondition for the establishment of the blood circulation of 

mother and fetus. It was found that Gcm1 mutants do not form the labyrinth at all 

[24]. Also Gcm1 and its protein gene products are responsible for the differentiation 

of synciciotrophoblast. The expression of Gcm1 mRNA is visible in mouse chorion 

cells before the establishment of the contact with allantois [25]. In human, reduced 
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expression of GCM1 gene analogue, is observed in pathologic condition called pre-

eclampsia [26]. 

Application of 5-azaC from the day 7 to day 10 of gestation displays different pattern 

of glycosylation. The expression of the new glycoprotein GP70, being completely 

absent or slightly expressed in control samples, was clearly detected in placentas 

treated by 5azaC. This is opposite to glycoprotein GP40 being found only in the 

controls. By application of 5azaC we probably changed the expression of genes at 

that very moment when ectoplacental cone, as a primordium for development of final 

placenta, was developing [27]. This explains the histology findings of hardly 

detectable labyrinth in 5azaC treated placentas.  

Days 11 and 12 of rat pregnancy is the period of particularly pronounced 

endovascular invasion of giant trophoblast cells into maternal blood vascular system 

and differentiation of spongioblast into the glycogen-rich trophoblast cells responsible 

for interstitial infiltration [28]. 5azaC treated placentas showed clear border between 

labyrinth and basal layer at this particular days of pregnancy. Schreiber and 

collaborators constructed mutants for the gene Fra1, a member of the gene family 

which codes for synthesis of AP-1 (Activator Protein 1) crucial for embryonic 

development and carcinogenesis as well. The embryos lacking this gene die in mid 

gestation with the reduced labyrinth and the major part of placenta is avascular. To 

the contrary, the basal layer remains without changes [29].  

Hemberger and Cross quote a series of genes (i.e. Sos1 and Gab1) whose 

mutations can result in reduced labyrinth. The expression of Mash2 gene, 

epigenetically being regulated by the process of DNA methylation, is responsible for 

the maintenance of the trophoblast stem cells.  Mash2 gene is intensively present in 

the placenta up to the day 12 of gestation, while in the later stages of pregnancy, its 

expression diminishes [30]. Although 5azaC probably activates Mash2 when applied 

after day 12 of gestation, its activity does not disturb the development of labyrinth 

layer. Western blot analysis using PHA-E lectin shows stronger expression of GP70 

in treated placentas. Thus, the stronger expression of this glycoprotein was found in 

treated rats from day 7 to day 12 of pregnancy, but was not or was slightly visible in 

control placentas.  
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The day 13 of rat gestation is the period in placental development when glycogen-

rich cells continue the decidual invasion and concentrate around the central maternal 

artery [31]. In 5azaC treated specimens labyrinth occupies more than 2/3 of the 

placenta, resembling the normal pregnancy. Moreover, positive intranuclear signal is 

visible in trophoblast and giant cells. Intensive cellular division is in concordance with 

endovascular invasion of giant cells and interstitial invasion of glycogen-rich cells. 

Although the histological picture resembles the picture of the normal, healthy 

placenta, the expression of glycoproteins in the 5azaC treated animals still does not 

match the expression pattern in controls. Before day 13 of gestation GP40 showed 

elevated expression in controls when compared to 5azaC treated placentas. When 

5azaC was applied to pregnant females on this very day it caused elevated 

expression of GP40 in treated placentas. Therefore, it looks like that its expression is 

important for the establishment of the normal placental structure. 

We assumed that preconditions for normal placental structure have been established 

before day 13 of gestation. Consequently, there was no difference in glycoprotein 

composition in placentas treated by 5azaC on day 14, 15, and 17, compared to 

untreated placentas. However, statistically significant difference in placental weight 

was found in animals treated by 5azaC on day 14 compared to controls.  As this is 

the period when the endovascular invasion of giant cells and interstitial invasion of 

glycogen-rich trophoblast cells are not completely finished, we can still interfere with 

the establishment of flow through labyrinth [32].  

The proliferative capacity of placental cells was determined by studying expression of 

PCNA. This is a non-histone nuclear protein, which functions in the system of DNA 

polymerase δ and serves as an excellent marker for cell proliferation [33]. Many 

researchers are using it in oncology because it has been proven that its elevated 

expression speaks in favor of cancer invasiveness, but also about the prognosis of 

the malignant disease [34].  

It is clear that PCNA is included in the process of DNA methylation. The DNA 

methyltransferase – Dnmt1 is associated with PCNA in the region of replication forks 

[35]. Dnmt1 demonstrates much stronger affinity for DNA with already bound PCNA, 

compared to free DNA molecule. Therefore interaction of PCNA and Dnmt1 

enhances the process of methylation [36]. The application of 5acac influenced 

development of the placenta and the degree of trophoblast proliferation in their basal 
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layer. Statistically significant difference in expression of PCNA positive cells is clearly 

evident in all analyzed placentas, starting from the day 4 of the 5azac application to 

the day 15. The most prominent changes occurred in placenta exposed to 5azaC 

from day 7 to 12. The expression of PCNA positive cells is lower during that period, 

and the difference is statistically significant compared to the controls. If 5azaC was 

applied on other days of rat pregnancy the PCNA expression was higher compared 

to the controls. The PCNA protein, being included in replication of DNA, is also 

involved in repair of a damaged DNA molecule [37]. However, tumor suppressor 

protein p53 is also participating in regulation of its activity. The low concentration of 

protein p53 in cell leads to the activation of PCNA promoter, while the high 

concentration of p53 results with its inactivation [38]. Based on our results we believe 

that 5azac administered on days 4, 5, 6 of gestation was so teratogenic that the 

reaction against its application has mobilized the whole cell machinery for repair of 

the damaged DNA.  

However, there is still open question why there was no differences found in 

glycoprotein content on the placenta exposed to 5azac on the day 5. As well as thet, 

in this group of analyzed placentas, there was no clear labyrinth found. Therefore, in 

our future research projects planned, we intend to expand the number of lectins in 

order to recognize different glycoproteins. Finally, our results confirm that no 

research assessing the placenta on molecular level, should avoid the morphological 

assessment. The results about the outcome of the animals outcome were presented 

in our previously published paper [39].  

These results can have significant impact for further studies pointing the importance 

for exact identification of detected glycoproteins. According to methylation patterns 

their expression is prerequisite for normal placentation and fetal development.  
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Figure 1 

The placental weight difference between control group and group treated by 5azaC 

at different gestation days. 
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Figure 2 

Western blott analysis of placentas treated with 5azaC (2) compared with control (1) 

detected by lectins SNA, DBA, PHA-E and UEA-I. Placental homogenates 

(40µg/lane) were loaded onto concentration gradient SDS polyacrylamide gels (5-15 

%). Glycoprotein pattern of placenta treated with 5azaC on day 6 (a), day 7 (b), day 8 

(c), day 9 (d), day 10 (e), day 11 (f), day 12 (g) and day 13 (h)  of gestation, obtained 

by electrophoresis and detection with lectins (2) in comparison with control placenta 

(1).  
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Figure 3 A - Separate values of numerical density (Nv) for PCNA in 20 days old rat placentas presented graphically depending on 

the day of 5azaC application. The red lines represents the polynomial of fifth degree. 

B -The mean values with 95% Confidence intervals (CI) of investigated groups. The red lines represents mean value and 95% CI 

for control group. 

Based on this analysis the relationship can be found regarding the 5azaC application and the ability of trophoblast proliferation of 

the basal layer cells in rat placenta. 
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Figure 4 

PCNA expression in the placental tissue after the application of 5azaC on day 4 (A), 

day 5 (B) day 6 (C) and PCNA expression in control group (D). Signal found in 

trophoblast cells (arrow) b- basal layer, d-decidua, *-giant trophoblast cell, DAB, 

hemalaun contrast 
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Figure 5 

PCNA expression in placental tissue after 5azaC application on the day 8 (A), 9 (B), 

and negative control (C) as well as normal placenta (D). Signal found in trophoblast 

cells (arrow) b- basal layer, d-decidua, *-giant trophoblast cell, DAB, hemalaun 

contrast 
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Figure 6 

PCNA expression in placental tissue after 5azaC application on day 11 (A), 12 (B), 

14 (C) and PCNA expression in negative control (D) Signal found in trophoblast cells 

(arrow) b- basal layer, d-decidua, *-giant trophoblast cell, DAB, hemalaun contrast 

 

 

 


