SVEUČILIŠTE U ZAGREBU
MEDICINSKI FAKULTET

Edita Lukić

Intrinzična inzulinska rezistencija u nedijabetičara i pojava hiperglikemije u teškoj akutnoj bolesti

DISERTACIJA

Zagreb, 2016.
Intrinzična inzulinska rezistencija u nedijabetičara i pojava hiperglikemije u teškoj akutnoj bolesti

Disertacija

Zagreb, 2016.
Disertacija je izrađena u Zavodu za intenzivnu medicinu Klinike za unutrašnje bolesti Kliničkog bolničkog centra Zagreb, Medicinskog fakulteta Sveučilišta u Zagrebu

Voditelj rada: Doc.dr.sc. Ivan Gornik, dr.med.
SADRŽAJ:

POPIS KRATICA

1. UVOD ... 1

1.1. Šećerna bolest tip II .. 1

1.1.1. Epidemiologija šećerne bolesti tip II 2

1.1.2. Patogeneza šećerne bolesti ... 4

1.1.2.1. Teorije nastanka šećerne bolesti tip II 5

1.1.3. Komplikacije šećerne bolesti .. 8

1.2. Inzulinska rezistencija.. 12

1.2.1. Signalni put djelovanja inzulina .. 12

1.2.2. Mehanizmi nastanka inzulinske rezistencije 14

1.2.2.1. Genetska pozadina inzulinske rezistencije 15

1.2.2.1.1 Mutacije gena inzulinskog receptora 15

1.2.2.1.2. Mutacije gena inzulin receptor supstrat obitelji 15

1.2.2.1.3. Utjecaj genetskog polimorfizma na inzulinsku rezistenciju 16

1.2.3. Uloga masnog tkiva i upale u inzulinski rezistenciji 19

1.2.4. Mitohondrijska disfunkcija i inzulinska rezistencija 22

1.2.5. Inzulinska rezistencija i kardiovaskularna homeostaza 23

1.2.6. Inzulinska rezistencija centralnog živčanog sustava 25

1.2.7. Mjerenje inzulinske rezistencije .. 27

1.3. Hiperglikemija u akutnoj bolesti.. 34

1.3.1. Mehanizam nastanka hiperglikemije u akutnoj bolesti 34

1.3.2. Posljedice hiperglikemije u akutnoj bolesti 35

1.3.2.1. Hiperglikemija i infekcije ... 37

1.3.2.2. Hiperglikemija i tromboza ... 37
1.3.2.3. Hiperglikemija i ostalo ... 38
1.3.2.4. Hiperglikemija u akutnoj bolesti i kasniji razvoj šećerne bolesti 38
1.3.3. Kontrola glikemije u akutnoj bolesti...40

2. HIPOTEZA ..44

3. CILJEVI ISTRAŽIVANJA ..45
3.1. Glavni cilj istraživanja...45
3.2. Specifični ciljevi istraživanja..45

4. ISPITANICI I METODE ...46
4.1. Definicije..50
4.2. Statističke metode. ..52

5. REZULTATI ..53

6. RASPRAVA ...66

7. ZAKLJUČAK ...74

8. SAŽETAK ..75

9. SUMMARY ...77

10. LITERATURA ..78

11. ŽIVOTOPIS ..100
POPIS KRATICA

Aβ - amiloid beta

ACCORD - prema engl. Action to Control Cardiovascular Risk in Diabetes

ADA – prema engl. American Diabetes Association

ADRB - beta adrenoreceptori

ADVANCE - prema engl. Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation

AGE - krajnji produkti glikacije

AKT - protein kinaza B

APACHE II - prema engl. Acute Physiology And Chronic Health Evaluation II

ApoE - apolipoprotein E

ATP - adenosin-3-fosfat

Asp - asparginska kiselina

BAT - prema engl. brown adipose tissue

BCGS - prema engl. brain-centred glucoregulatory system

BMI - indeks tjelesne mase

CNS - centralni živčani sustav

CoA - koenzim A

CRP - C-reaktivni protein

DAG - diacilglicerol

DCCT - prema engl. Diabetes Control and Complications Trial

DM – šećerna bolest

DNA - deoksi ribonukleinska kiselina

ELOVL - obitelj elongaza dugolančanih masnih kiselina

eNOS - endotelna sintetaza dušikovog monoksida

ET-1 - endotelin-1

FABP - masno-kiselinski vezujući protein

FFA - slobodne masne kiseline

ELOVL - elongaza dugolančanih masnih kiselina

FABP - masno-kiselinski vezujući protein

FAD - flavin adenin dinukleotid

FSIVGTT – prema engl. frequently sampled intravenous glucose tolerance test

FOXO - prema engl. forhead box protein
GAPDH - gliceradlehid-3-fosfat dehidrogenaza
GCS - Glasgowska ljestvica kome
GE – prem engl. glucose effectiveness
GIR - brzina infuzije glukoze
Gly - glicin
GLUT - transportere glukoze
GUK - glukoza u krvi
GUP – glukoza u serumu
HbA1c - glikirani hemoglobin
HEC – prema engl. hyperinsulinaemic euglycaemic clamp
HOMA - prema engl. homeostatic model assessment
HOMA-IR - prema engl. homeostatic model assessment-Insulin Resistance
ID - Internacionalni dolar
IL-1 - interleukin-1
IL-6 - interleukin-6
IFG – prema engl. Impaired Fastig Glucose
IGF-1 – prema engl. insulin-like growth factor 1
IGF – prema engl. insulin-like growth factor
IGFBP – prema engl. insulin-like growth factor binding proteins
IGT – prema engl. Impaired Glucose Tolerance
IIT - intenzivna terapija inzulinom
IKK – IkB kinaza
Ile - izoleucin
IR - inzulinska rezistencija
Irc - inzulinski receptor
IRS - inzulin receptor supstrat
IRS-PI(3)K - inzulin receptor supstrat-fosfatidilinozitol-3-OH kinaza
JIL - jedinica intenzivnog lijecenja
JNK - c-Jun N-terminalna kinaza
LDL - lipoprotein male gustoće
MAPK - prema engl. mitogen activated protein kinase
MCP - monocitni kemoatmarktani protein
Met - metionin
NADPH - nikotinamid adenin dinukleotid fosfat
NADH - nikotinamid adenin dinukleotid
NEFA - neesterificirane masne kiseline
NF- κB - nukelarni faktor κB
NO - nitrični oksid
OGTT - oralni test opterećenja glukozom
PAI-1 - inhibitor plazminogen aktivatora 1
PARP - poli-adp riboza polimeraza
PDK - fosfatidilinozitol ovisna kinaza
PI3K - fosfatidilinozitol-3-OH kinaza
PIP2 - fosfatidilinozitol-4,5-fosfat
PKB - protein kinaza B
PKC - protein kinaza C
PTP - protein tirozin fosfataza
PVAT - perivaskularno masno tkivo
RBP - retinol vežući protein
RETN - rezistin
RH - Republika Hrvatska
ROS – prema engl. reactive oxygen species
RYGB - prema engl. Roux-en-Y gastric bypass
SAD - Sjedinjene Američke Države
SOFA - prema engl. Sequential Organ Failure Assessment
SSC – prema engl. Surviving Sepsis Campaign
TAB - teška akutna bolest
TAG - triacilglicerol
TNF-α - tumor nekrotizirajući faktor α
tPA - tkivni aktivator plazminogena
TSHR – prema engl. thyroid stimulating hormone receptor
Tyr - tirozin
UCP - prema engl. uncoupling protein
UDP - uridin difosfat
UKPD - prema engl. The United Kingdom Prospective Diabetes Study
USD - Američki dolar
VEGF – prema engl. vascular endothelial growth factor
Val - valin
VSMC - vaskularni glatki mišić
WAT – prema engl. white adipose tissue
WHR – prema engl. waist to hip ratio
QUICKI - prema engl. Quantitative Insulin Sensitivity Check Index
1. UVOD

1.1. ŠEĆERNA BOLEST TIP II

Šećerna bolest je stanje kronične hiperglikemije kod kojeg je poremećen metabolizam ugljikohidrata, bjelančevina i masti, ne predstavlja patofiziološki i klinički jedan entitet već grupu metaboličkih bolesti koje su karakterizirane hiperglikemijom nastalom zbog poremećaja u inzulinskoj sekreciji, poremećenih učinaka inzulina ili obojeg. Bolest je kronična i neizlječiva te opterećuje pojedinca, ali i društvo.

Etiološki se danas šećerna bolest prema ADA (American Diabetes Association) smjernicama klasificira u četiri velike skupine: šećerna bolest tip I, šećerna bolest tip II, gestacijska šećerna bolest te posebnim tipovi šećerne bolesti. Šećerna bolest tip I nastala kao posljedica uništenja beta stanica gušterače dijeli se u tip I A (imunološko posredovano uništavanje beta stanica) te tip I B (idiopatski uzrok uništavanja beta stanica). Skupinu posebnih tipova šećerne bolesti čini etiološki heterogena skupina bolesti te obuhvaća genetičke poremećaje beta stanica i djelovanja inzulina, bolesti egzokrinog dijela gušterače, endokrinopatije, genetske sindrome ponekad povezane sa šećernom bolesti, rijetke oblike imunološki posredovane šećerne bolesti te šećernu bolest uzrokovanu infekcijama i uzimanjem pojedinih lijekova (1).

Osim klasificiranih tipova šećerne bolesti u klinici se svakodnevno koristi termin preddijabetes. Preddijabetes je termin koji obuhvaća poremećenu vrijednost glikemije natašte ili IFG (Impaired Fastig Glucose) karakteriziranu povišenim vrijednostima glikemije natašte u odnosu na referentne vrijednosti, ali nižim od vrijednosti potrebne za dijagnozu šećerne bolesti, poremećeno podnošenje glukoze ili IGT (Impaired Glucose Tolerance) karakteriziranu vrijednostima glikemije nakon oralnog opterećenja iznad referentnih vrijednosti, ali nižim od vrijednosti potrebne za dijagnozu šećerne bolesti te bolesnike kod kojih vrijednost HbA1c iznosi 5,7-6,4%.

Dva oblika preddijabetesa ne čine zasebne kliničke entitete već pacijenti oboljeli od preddijabetesa predstavljaju grupu pacijenata s povišenim rizikom razvoja šećerne bolesti, kao i kardiovaskularnih bolesti, u daljinjem periodu života (2).
Šećerna bolest tip II rastući je globalni javnozdravstveni problem koji je poprimio razmjere epidemije. Prema procjenama Međunarodne dijabetičke federacije (International Diabetes Federation) učestalost šećerne bolesti u svijetu 2013. godine iznosila je 8,3%, s ukupnom brojkom od 382 milijuna oboljelih (3).

Procijenjeni broj oboljelih pacijenata kojima bolest još nije dijagnosticirana je alarmantan te je iste godine iznosio 175 milijuna (3). Veliki postotak oboljelih, njih čak 80%, živi u zemljama u razvoju s niskim ili srednjim dohodkom i time predstavlja dodatan javnozdravstveni problem obzirom na skromnost dostupne zdravstvene zaštite i liječenja u tim područjima. Posebno je zabrinjavajuć predviđeni trend porasta u narednih dvadeset godina s prevalencijom od 10.1% i očekivanim ukupnim brojem oboljelih od 592 milijuna ljudi 2035. godine (3). U Europi je 2013. godine učestalost šećerne bolesti iznosila 7,9%, s ukupno 56,3 milijuna oboljelih i 18 milijuna još nedijagnosticiranih bolesnika (3).

Prema podacima iz CroDiab izvještaja za 2014. godinu u Hrvatskoj je učestalost šećerne bolesti iznosila 7,90%, s ukupno 254 296 registriranih oboljelih bolesnika. Podjela učestalosti pojedinih tipova bolesti u Hrvatskoj odgovara svjetskim trendovima te šećerna bolest tip I obuhvaća 12% oboljelih, šećerna bolest tip II 79% oboljelih, drugi tipovi šećerne bolesti odnose se na 1% bolesnika dok kod 8% oboljelih nije definiran tip šećerne bolesti od koje boluju (4).

Šećerna bolest je najveći izazov svjetskog zdravstva u 21. stoljeću (2): odgovorna je za ukupno 5.1 milijuna smrti u dobroj skupini 20-79 godina u svijetu u 2013. godini, predstavljajući tako uzrok ukupne svjetske smrtnosti od 8.4% u toj dobroj skupini; gdje skoro polovica (48%) smrti otpada na pojedince mlade od 60 godina.

U Hrvatskoj je 2014. godine umrlo 1333 bolesnika radi šećerne bolesti, odnosno šećerna bolest je bila odgovorna za 2.62% mortaliteta u RH. S tim postotkom smrtnosti nalazi se na 7. mjestu uzroka smrti u RH dok je godinu ranije zauzimala 8.mjesto (5).

Troškovi povezani sa šećernom bolesti prezentirani su u astronomskim iznosima. Na svjetskoj razini u 2013. godini na liječenje šećerne bolesti i komplikacije same bolesti potrošeno je 548 milijardi USD (3). Kako bi se kompenzirala razlika u kupovnoj moći
ukupan trošak šećerne bolesti izražen u ID (Internacionalni dolar) iznosi 581 milijardu ID. Internacionalni dolar predstavlja jedinicu hipotetske valute koja ima jednak paritet kupovne moći kao USD u SAD u određenom trenutku. ID izražava odnos kupovne moći i BDP-a po stanovniku pojedine zemlje. Postotak od 10.8% ukupne svjetske potrošnje na zdravstvo otpada na trošak same šećerne bolesti. Obzirom na velike razlike u potrošnji po pojedinom pacijentu, 5621 USD (5305 ID) u zemljama s visokim prihodima te 356 USD (545 ID) u zemljama sa srednjim i niskim prihodima, može se reći da je na svjetskoj razini prosječno potrošeno 1437 USD (1522 ID) po pacijentu za liječenje šećerne bolesti. Osim troškova zbog povećanog korištenja medicinskih usluga dodatni trošak predstavlja smanjena produktivnosti bolesnika te njihove invalidnosti. Veliki broj nedijagnosticiranih bolesnika također uvelike utječe na troškove. Prema istraživanju provedenom u Sjedinjenim Američkim Državama nedijagnosticirani slučajevi su odgovorni za dodatnu potrošnju u iznosu od 18 milijardi USD na godišnjoj razini (6).
1.1.2. PATOGENEZA ŠEĆERNE BOLESTI TIP II

Šećerna bolest tip II kompleksna je multifaktorijalna bolest karakterizirana hiperglikemijom do koje dolazi zbog smanjenje funkcije beta stanica gušterače i smanjenog odgovora stanica na djelovanje inzulina.

Patogeneza same bolesti do danas nije u potpunosti razjašnjena no smatra se da bolest nastaje kao posljedica međudjelovanja okolišnih čimbenika u genetski osjetljivih pojedinaca. Veliki broj rizičnih faktora za nastanak šećerne bolesti je poznat te ih je moguće podijeliti u grupe ovisno o mogućnosti intervencija na same faktore. U grupi rizičnih faktora na koje nije moguće utjecati nalaze se kako slijedi: etničko podrijetlo, dob, spol, genetski faktori, pozitivna obiteljska anamneza, anamnestički podatak o gestacijskoj šećernoj bolesti, anamnestički podatak o nedijabetičkoj povišenoj vrijednosti glukoze natašte ili nakon testa opterećenja glukozom, pozitivna anamneza vezana za kardiovaskularne bolesti, dislipidemiju i hipertenziju te smanjena porođajna težina (7). Etničko podrijetlo igra veliku ulogu u nastanku same bolest. Tako prevalencija šećerne bolesti kod Kineza iznosi 1% dok kod Pima Indijanaca iznosi preko 50% u odrasloj populaciji. Bolest je 2-6 puta češća kod afroamerikanaca i nativnih amerikanaca, Pima Indijanaca i meksikanaca u SAD-u nego bjelaca iako žive u istom okruženju (8). Grupa rizičnih faktora na koje je moguće utjecati obuhvaća: pretilost, pretilost centralnog tipa, smanjenu fizičku aktivnost, pušenje, alkoholnu apstinenciju, dijetu sa smanjenim unosom vlakana te dijetu s povećanim unosom zasićenih masnih kiselina. Alkoholna apstinencija se u ovom slučaju ne odnosi na alkoholnu apstinenciju od strane liječenih alkoholičara već se odnosi na apsolutnu nekonzumaciju alkoholnih pića od strane nealkoholičara obzirom na dokazan protektivni učinak umjerene konzumacije alkohola. Rizik nastanka bolesti raste s povećanjem BMI, dok vježbanje ima protektivnu ulogu (9). Visceralna debljina prethodi nastanku bolesti. Istraživanja su pokazala da visoka inzulinska rezistencija i smanjena inzulinska sekrecija predskazuju pojavu bolesti neovisno o direktno izmjerenoj visceralnoj debljini, što bi značilo da taj oblik debljine pridonosi razvoju same bolesti neovisno o efektu kojeg ima na inzulinsku osjetljivost (10).

Postoje čvrsti dokazi koji podupiru tezu o genetski uvjetovanoj bolesti. Konkordantnost šećerne bolesti tip II kod monozigotnih blizanaca iznosi 70%, dok kod dizigotnih iznosi 20-30% (11). Kod pojedinca s pozitivnom obiteljskom anamnezom gdje je jedan roditelj oborio od šećerne bolesti tip II rizik razvoja bolesti tijekom života iznosi 40%, rizik je veći u slučaju
da se radi o oboljeloj majci (12). Rizik razvoja bolesti tijekom života raste na 70% u slučaju da su oba roditelja oboljela od šećerne bolesti tip II.

Napredak genotipske tehnologije omogućio je otkrivanje genske podloge same bolesti kako bi se moglo pristupiti novim metodama liječenja iste. Do danas je otkriveno preko 70 lokusa gena povezanih sa šećernom bolesti, no pitanje nasljeđivanja i dalje ostaje otvoreno obzirom da se samo 10% nasljednosti šećerne bolesti tip II može objasniti do sada otkrivenim lokusima (13-15).

Tako se za Europsku populaciju procjenjuje da 63 dosada poznata lokusa šećerne bolesti zajedno objašnjavaju 5.7% varijabilnosti osjetljivosti (16). Unazad nekoliko godina stvoren je veći broj predikcijskih modela razvoja šećerne bolesti tip II baziranih na genskoj varijabilnosti s ciljem bolje prevencije same bolesti. Većina modela pokazala se tek malo bolja u usporedbi s konvencionalnim predikcijskim modelom razvoja šećerne bolesti baziranog na spolu, dobi, BMI i obiteljskoj anamnezi šećerne bolesti tip II (17,18). Istraživanje bazirano na najvećoj brojki od 62 poznata lokusa pokazalo je zanemarivo veći postotak pozitivne predikcije kod uključenja genske varijabilnosti u sam model spram konvencionalnog modela (19). Obzirom na trenutnu ograničenu kliničku upotrebu potrebno je proširiti istraživanja kako bi genske predikcije dobile značajno mjesto u planiranju otkrivanja i prevencije šećerne bolesti tip II.

1.1.2.1. TEORIJE NASTANKA ŠEĆERNE BOLESTI TIP II

Tradicionalni model homeostaze glukoze u organizmu i nastanka šećerne bolesti tip II u centru ima funkcioniranje beta stanica Langerhansovih otočića gušterače te ga se može nazvati model zasnovan na otočićima. Prema tom općem prihvaćenom modelu homeostaza glukoze u krvi prvenstveno je kontrolirana stimulacijom inzulinske sekrecije radi povećanja razine glukoze u krvi. Povišena razina glukoze u krvi s jedne strane potiče lučenje inzulina dok paralelno koči lučenje glukagona i time blokira jetrenu proizvodnju glukoze. Izlučeni inzulin potom djeluje različito na periferna tkiva; u jetri suprimira jetrenu proizvodnju glukoze dok u mišićnom i masnom tkivu potiče ulazak glukoze u stanice. Sinkronizirani odgovor otočića povećanim lučenjem inzulina kao odgovor na trenutno povišenu razinu glukoze u krvi nakon obroka osigurava urednu razinu glukoze u krvi. U slučaju kada se kod
pojedinca razvije inzulinska rezistencija, neovisno o uzroku njezina nastanka, prema modelu zasnovanom na otočićima homeostaza glukoze je očuvana kompenzatornim mehanizmom samih otočića povećanjem lučenja inzulina. Može se reći da otočići sprećavaju razvoj šećerne bolesti kod velikog broja pojedinaca kod kojih postoji inzulinska rezistencija. U trenutku kada otočići zbog svoje disfunkcije više nisu u mogućnosti povećati lučenje inzulina kako bi kompenzirali inzulinsku rezistenciju dolazi do nastanka intolerancije glukoze. Obzirom da disfunkcija samih otočića s vremenom napreduje, paralelno s povećanom proizvodnjom glukoze u jetri s jedne strane te smanjenim unosom glukoze u stanice s druge strane, dolazi do zamjetljive hiperglikemije i šećerne bolesti tip II

1.1.3. KOMPLIKACIJE ŠEĆERNE BOLESTI

Šećerna bolest povezana je s akutnim metaboličkim te kasnim kroničnim komplikacijama. Kronične komplikacije šećerne bolesti zahvaćaju mnoge organe i odgovorne su za smanjenje kvalitete života, za većinu morbiditeta i mortaliteta povezanih sa samom bolešću. U većini razvijenih zemalja šećerna bolest predstavlja glavni uzrok kardiovaskularnih bolesti, sljepoće, zatajenja bubrega te amputacije donjih ekstremiteta. Kronične komplikacije moguće je podijeliti na makrovaskularne i mikrovaskularne.

Makrovaskularne komplikacije odnose se na grupu kardiovaskularnih bolesti karakteriziranu aterosklerozom koja obuhvaća koronarnu bolest srca, cerebrovaskularnu bolest i perifernu vaskularnu bolest. Upravo su makrovaskularne komplikacije većinski odgovorne za morbiditet oboljelih pacijenata. Tako oboljeli od šećerne bolesti, posebice žene, imaju 2-4 puta veći rizik od smrti radi koronarne bolesti u usporedbi s grupom pacijenata iste dobi koji ne boluju od šećerne bolesti (27). Istraživanja su pokazala da pacijenti oboljeli od šećerne bolesti imaju rizik za razvoj infarkta miokarda jednak pojedincima koji su već preživjeli jedan infarkt miokarda, a ne boluju od šećerne bolesti (28).

Iako su makrovaskularne komplikacije posljedica hiperglikemije, velike studije nisu dokazale utjecaj smanjenja razine hiperglikemije na pojavnost makrovaskularnih komplikacija. Prema Diabetes Control and Complications Trial (DCCT) studiji poboljšana kontrola glikemije bila je povezana sa smanjenom pojavnošću neželjenih kardiovaskularnih događaja, ali razlika nije bila statistički značajna (29). Slični podaci dobiveni su iz The United Kingdom Prospective Diabetes Study (UKPDS) studije (30-33). Prema UKPDS studiji nije primjećen efekt snižavanja razine glukoze u krvi na pojavnost makrovaskularnih komplikacija, iako je zabilježeno smanjenje rizika kombinacije fatalnih i nefatalnih infarkta miokarda te iznenadne smrti za 16%, no ono nije imalo statistički značaj. Ista studija je epidemiološkom analizom pokazala povezanost rizika kardiovaskularnih komplikacija i glikemije; za svako smanjenje vrijednosti HbA1c od 1% (npr. s 9% na 8%) dolazi do smanjenja smrtnosti povezane sa šećernom bolesti za 25%, smanjenja sveukupne smrtnosti za 7% i smanjenja od 18% kombinacije fatalnih i nefatalnih infarkta miokarda. U studiji nije zabilježen glikemijijski prag kada dolazi do makrovaskularnih komplikacija. Studije novijeg datuma ACCORD (Action to Control Cardiovascular Risk in Diabetes) (34) i ADVANCE (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified
Release Controlled Evaluation) (35) također nisu pokazale bitan utjecaj dobre kontrole hiperglikemije na makrovaskularne komplikacije.

Mikrovaskularne komplikacije zahvaćaju bubrege, živce i oko te se javljaju kod oba tipa šećerne bolesti. Razlog prvenstvenom stradanju kapilarnih endotelnih stanice mrežnice, mezangijskih stanice bubrežnih glomerula, neurona i Schwannova stanica perifernih živaca leži u činjenici da upravo te stanice nemaju sposobnost inhibicije preuzimanja glukoze u hiperglikemiji.

Nastanak mikrovaskularnih komplikacija obuhvaća nekoliko dosada definiranih mehanizama povezanih s hiperglikemijom kao glavnom karakteristikom bolesti.

Sama glukoza može dovesti do oštećenja vaskularne stanice putem svojeg metabolizma ili kroz kemijske promjene koje nisu povezane s enzimatskom aktivnošću.

Hiperglikemija također uzrokuje povećanu aktivnost poliolskog metaboličkog puta. Poliolski metabolički put temelji se na djelovanju enzima aldoza reduktaze. U normalnim uvjetima aldoza reduktaza ima zadaću neutralizacije toksičnih aldehida u inaktivne alkohole. Povećana razina glukoze u krvi dovodi do pojačane aktivnosti aldoza reduktaze koja uzrokuje povećano stvaranje sorbitola koji predstavlja jedan od uzroka metaboličkih promjena koje dovode do neuropatije i retinopatije. Prilikom pretvaranja glukoze u sorbitol dolazi do povećane potrošnje kofaktora NADPH što uzrokuje unutarstaničnu podložnost oksidativnom stresu radi smanjenog stvaranja ključnog unutarstaničnog antioksidans-a reduciranog glutationa.
Hiperglikemija isto tako povećava sintezu diacilglicerola (DAG) koji potom aktivira izoforme protein kinaze C (PKC) te dolazi do raznih staničnih abnormalnosti. Promjene koje aktivirana PKC uzrokuje uključuju zadebljanje bazalne membrane, povećanu permeabilnost, abnormalnosti koagulacije i kontraktilnosti, povećanu angiogenezu te kardiomijopatiju.

Aktivacija heksozaminskog puta predstavlja četvrti mehanizam utjecaja hiperglikemije na stanicu. Do aktivacije ovog puta dolazi uslijed povećane količine fruktoza-6-fosfata koji se djelovanjem enzima glutamin fruktoza-6-fosfat aminotransferaze pretvara u glukozamin-6-fosfat i krajnje u uridin difosfat (UDP) N-acetilglukozamin. Krajnji produkt se veže na serinske i treoninske ostatke transkripcijskih faktora i uzrokuje modifikaciju gena.

Zajednička karakteristika sva četiri prethodno spomenuta mehanizma je krajnje stvaranje viška kisikovih radikala koji uzrokuju oštećenje DNA. U normalnim uvjetima glukoza se metabolizira Krebsovim ciklusom trikarbonskih kiselina u kojem nastaju donori elektrona: NADH te FADH2. Transportni lanac elektrona u mitohondrijima sastoji se od četiri kompleksa. NADH predaje elektrone kompleksu I, FADH2 kompleksu II koji preko koenzima Q prelaze u kompleks III, citokrom C i u kompleks IV, a u konačnici reducirajući slobodni kisik u vodu. Prolazak elektrona kroz taj sustav događa se usporedno s pumpanjem protona iz stanice i time se stvara voltažni gradijent mitohondrijske membrane. Energija stvorena tim transportom koristi se u stvaranju ATP-a ATP sintezom. Uravnoteženo i stalno stvaranje ATP-a osigurava UCP koji može uravnotežiti gradijent stvarajući toplinu. U uvjetima hiperglikemije previše je supstrata (glukoze) te transportni lanac postoje preopterećen. Dolazi do blokade transporta elektrona u kompleksu III, elektroni se vraćaju koenzimu Q koji ih prenosi molekularnom kisiku čineći kisikov radikal. On se može degradirati do vodikova peroksida koji se uz druge enzime pretvara u vodu (38).

Hiperglikemija osim negativnog djelovanja na makrovaskularnom i mikrovaskularnom nivou također ima negativan direktan utjecaj na same beta stanice. Obzirom na posljedice koje ostavlja može se govoriti o toksičnosti same glukoze na beta stanice. Zbog pojačanog metabolisma dolazi do uvećanog stvaranja ROS (reactive oxygen species). Beta stanice imaju smanjenu količinu enzima katalaze i superoksid dismutaze koje u normalnim uvjetima metaboliziraju ROS te povećana količina ROS aktivira NF-kapaB koji djeluje proapoptotički.
Neosporna je činjenica povezanosti hiperglikemije i mikrovaskularnih komplikacija, kao i pozitivnog utjecaj kontrole razine glikemije na razvoj istih. Studije DCCT (29) i Stockholm Diabetes Intervention Study (39) pokazale su da smanjenje razine glukoze u krvi dovodi do kasnije pojave i sporijeg napredovanja mikrovaskularnih komplikacija kod oboljelih od šećerne bolesti tip 1. Prema UKPDS studiji (30-33) smanjenje razine glukoze u krvi dovodi do ukupnog 25%-tnog smanjenja mikrovaskularnih komplikacija. Sniženje vrijednosti HbA1c za 1% (npr. s 9% na 8%) dovodi do smanjenja rizika nastanka mikrovaskularnih komplikacija za 35%.
1.2. INZULINSKA REZISTENCIJA

Inzulinska rezistencija karakterizirana je smanjenim odgovorom ciljanih stanica ili cijelog organizma na izloženu koncentraciju inzulina, a nastaje kao posljedica inhibicije inzulinskog signalnog puta (40).

Djelovanjem beta stanica gušterače koje povećanim lučenjem inzulina pokušavaju uspostaviti homeostazu glukoze u organizmu nastaje hiperinzulinemija koja ujedno predstavlja i jednu od glavnih karakteristika inzulinske rezistencije. Inzulinsku rezistenciju teško je odvojiti od šećerne bolesti tip II, metaboličkog sindroma i pretilosti, a nalazi se u podlozi nastanka kardiovaskularnih i neurodegenerativnih bolesti. Uz sav trud znanstvene zajednice do danas nije u potpunosti razjašnjen mehanizam nastanka inzulinske rezistencije. Cijeli niz faktora smatra se mogućim uzrokom razvoja ovog stanja te će u daljnjem tekstu biti opisani mehanizmi nastanka inzulinske rezistencije prema zadnjim znanstvenim dosezima.

1.2.1. SIGNALNI PUT DJELOVANJA INZULINA

Inzulin svojim djelovanjem na staničnoj razini uzrokuje niz fizioloških promjena. Hormon djeluje na metabolizam glukoze, lipida i proteina te utječe na rast stanice i ekspresiju gena.

Signalni put djelovanja inzulina je poznat (41).

Djelovanje inzulina započinje njegovim vezanjem za inzulinski receptor (42). Inzulinski receptor (IRc) je heterotetramer sastavljen od dvije alfa i dvije beta podjedinice međusobno vezane disulfidnim vezama. Inzulin se veže za vanstaničnu alfa podjedinicu receptora i aktivira tirozin kinazu u beta podjedinici. Vezivanje inzulina na IRc uzrokuje niz intramolekularnih transfosforilacijskih reakcija u kojima jedna beta podjedinica fosforilira susjednu podjedinicu na određenim tirozinskim reziduama. U trenutku aktivacije tirozin kinaze inzulinskog receptora dolazi do autofosforilacije same beta podjedinice te je za daljnju amplifikaciju aktivnosti kinaze potrebna fosforilacija tirozinskih rezidua (Tyr-1158, Tyr-1162, Tyr-1163) (43). U tom trenutku dolazi do regrutacije različitih adapterskih molekula uključujući obitelj proteina inzulin receptor substrata (IRS 1,2,3,4) koji su prisutni na
površini svih stanica, no njihova ekspresija je jače izražena na ciljnim stanicama inzulina: mišićima, jetri i masnom tkivu (45). Tirozin fosforilirani IRS predstavljaju mjesto vezivanja različitih signalnih molekula koje posjeduju src homology 2 (SH2) domene uključujući regulatorne podjedinice (p85, p55, p50, p85, p55 PIK) fosfatidilinozitol 3-kinaze (PI3K), tirozin kinaze Fyn i Csk, tirozin protein fosfatazu SHP-2/Syp te druge signalne molekule poput Grb-2, Crk i Nck (46). Aktivacija SH2 domena proteina započinje signalnu kaskadu te putem niza efektornih molekula kao krajnji rezultat ima prijenos inzulinskog signala do unutarstaničnih putova zaduženih za regulaciju stanične diferencijacije, rasta, preživljenja i metabolizma. Ciljnu molekulu IRS proteina (IRS-1 i IRS-2) predstavlja PI3K koja fosforilacijom specifičnih fosfoinozitida pretvara fosfatidilinozitol 4,5 bifosfat u fosfatidilinozitol 3,4,5 trifosfat koji uzrokuje aktivaciju serin/treonin kinaze fosfoinozitol-ovisnu kinazu-1 (PDK1) (47). Supstrati fosfatidilinozitol-ovisne kinaze (PDK) su protein kinaza B (PKB) i atipične forme protein kinaze C (PKC) (48). Serin/treonin kinaza Akt (poznata kao PKB) uzrokuje inzulinski učinak na stanice jetre, inducira sintezu glikogena, proteina i preživljenje stanice putem inhibitornog djelovanja na proapoptotičke molekule. Inzulin stimulira ulazak glukoze u mišićne stanice i adipocite putem translokacije vezikula GLUT4 na plazmatsku membranu (49-51). Nedavno je opisan mehanizam neovisan o PI3K koji uzrokuje translokaciju GLUT4 vezikula i unos glukoze u stanice putem aktivacije G-proteina TC10 nakon vezanja inzulina za svoj receptor (52).
1.2.2. MEHANIZMI NASTANKA INZULINSKE REZISTENCIJE

Inzulinska rezistencija se nalazi u podlozi pojedinih bolesti koje predstavljaju veliki javnozdravstveni problem, no etiologija samog nastanka inzulinske rezistencije i dalje nije u potpunosti razjašnjena. U posljednje vrijeme u znanstvenoj zajednici pojavila su se dva različita mehanizma koji nude potencijalno objašnjenje nastanka inzulinske rezistencije, dok je za klinički manifestnu inzulinsku rezistenciju potrebna kombinacija oba.

Jedan od mehanizama predstavlju promjene u IRS-1 koje nastaju kao posljedica mutacija ili serinske fosforilacije IRS proteina i time smanjuju njihovu sposobnost privlačenja PI3K te time i njihovu aktivnost. Poznat je niz serin kinaza koje fosforiliraju serinske rezidue IRS-1 i oslabljaju prijenos inzulinskog signala, dok se mitohondrijska disfunkcija smatra mogućim trigerom pojedinih serin kinaza koje uzrokuju prethodno spomenutu serinsku fosforilaciju IRS-1. Uzroci serinske fosforilacije IRS-1 su kako slijedi:
1. mTOR- p70S6 kinaza, aminokiseline, hiperinzulinemija
2. JNK- stres, hiperlipidemija, upala
3. IKK- upala
4. TNFα- pretilost, upala
5. Mitohondrijska disfunkcija
6. PKC θ- hiperglikemija, diacilglicerol, upala

1.2.2.1. GENETSKA POZADINA INZULINSKE REZISTENCIJE

Prema dosadašnjim genetskim i epidemiološkim istraživanjima inzulinska rezistencija je genetski uvjetovano stanje. Genetska podloga same bolesti izrazito je kompleksna i heterogena te je većina gena još uvijek nepoznata. Danas postoji niz potencijalnih gena koji uzrokuju inzulinsku rezistenciju, no većina studija i dalje ostaje kontroverzna.

Uredno međudjelovanje svih proteina u inzulinskoj kaskadi osigurava održan prijenos inzulinskog signala i odgovor na povećanu koncentraciju glukoze. Mutacijom gena koji kodiraju pojedine proteine u prijenosu inzulinskog signal moguće je objasniti nastanak inzulinske rezistencije.

1.2.2.1.1. MUTACIJE GENA INZULINSKOG RECEPTORA

Mutacije inzulinskih receptora dovode do izražene inzulinske rezistencije kod nositelja mutacija. Tako mutacije na kodonima 133, 672, 897, 1000 te dvije delecijske mutacije (exoni 14 i 17) koreliraju s inzulinskom rezistencijom kod tih bolesnika. Mutacije kodona 133, 897 i 1000 uzrokuju smanjenje količine mRNA inzulinskog receptora od 80-90% (58), dok delecijska mutacija dovodi do smanjene sinteze inzulinskog receptora na dva načina: djelovanjem na smanjenje količine mRNA inzulinskog receptora ili delecijom bitnog dijela receptora (59). Mutacija inzulinskog receptora može uzrokovati smanjenje aktivnosti tirozin kinaza receptora. Mutacija krivog smisla Gly → Val na mjestu 1008 uzrokuje promjene u području odgovornom za vezanje ATP-a i time dovodi do poremećaja u fosforilaciji inzulinskog receptora (60).

1.2.2.1.2. MUTACIJE GENA INZULIN RECEPTOR SUPSTRAT OBITELJI

Genetske varijacije IRS su najbolji pokazatelji interakcije dva glavna uzroka inzulinske rezistencije: genetske podloge s jedne strane te utjecaja okoline s druge. Polimorfizam gena IRS-1 i IRS-2 u kombinaciji s pretilosti uzrokuje nastanak inzulinske rezistencije. Polimorfizam IRS-1 na kodonu 972 (G972R) koji uzrokuje zamjenu aminokiselina Gly → Arg u kombinaciji s pretilošću povezan je s povećanim rizikom nastanka šećerne bolesti tip
Isti rezultat dobiven je u slučaju polimorfizma IRS-2 na kodonu 1057 koji uzrokuje zamjenu aminokiselina Gly\(\rightarrow\)Asp (63). Genetske varijante PI3K također su povezane s nastankom inzulinske rezistencije. Polimorfizam SNP42 te zamjena aminokiselina Met\(\rightarrow\)Ile na kodonu 326 povezane su s povećanim rizikom razvoja inzulinske rezistencije (64-65). Sekvencioniranje gena SLC2A4 zaduženog za kodiranje GLUT4 nije pokazalo povezanost polimorfizma i smanjenog unosa glukoze u stanicu kao niti vezu s nastankom inzulinske rezistencije (66). Brojna istraživanja genetskih varijacija PTP1B gena-PTPN1 (protein tirozin fosfataza, non-receptor tip I) dala su kontradiktorne rezultate te se danas točno ne može reći koju ulogu igra genetska varijabilnost u nastanku poremećenog transporta glukoze u stanice mišića i stanica adipoznog tkiva i nastanku same inzulinske rezistencije (67).

1.2.2.1.3 UTJECAJ GENETSKOG POLIMORFIZAM NA INZULINSKU REZISTENCIJU

Napredak tehnologije omogućio je uvid u utjecaj genskog polimorfizma na inzulinsku rezistenciju (68). Obzirom na mnogobrojnost potencijalnih gena uključenih u nastanak inzulinske rezistencije radi preglednosti moguće ih je podijeliti kako slijedi: geni povezane s lipidnom homeostazom, geni povezani s metabolizmom energije, geni zaduženi za kodiranje hormona i hormonskih receptora, geni povezani s renin-angiotenzinskim sustavom te geni povezani s upalom.

Polimorfizam gena povezanih s lipidnom homeostazom uključuje polimorfizam FABP, ELOVL6 i APOE gena. FABP (masno-kiselinski vezujući proteini) su članovi obitelji vezujućih proteina koji sudjeluju u metabolizmu masti. FABP1-4 predstavljaju grupu tkivno specifičnog proteina koji imaju bitnu fiziološku ulogu u unosu, unutarstaničnom metabolizmu i ekskreciji masnih kiselina dugog lanca (69). Polimorfizam FABP 1 povezan je s rizikom nastanka šećerne bolesti tip II i inzulinskom rezistencijom u Španjolskoj populaciji (70). ELOVL6 (obitelj elongaza dugolančanih masnih kiselina 6) prisutne su u lipogenom tkivu i zadužene su za ubrzanje elongacije zasićenih i monozasićenih masnih kiselina s 12, 14 i 16 ugljikovih molekula. Polimorfizam ELOVL6 također je povezan s većim rizikom nastanka inzulinske rezistencije u Španjolskoj populaciji (71). Apolipoprotein E (ApoE) uključen je u homeostazu lipida u organizmu regulirajući unos hrane i potrošnju energije. Istraživanja na
miševima pokazala su da ApoE igra bitnu ulogu u razvoju inzulinske rezistencije i pretilosti (72-73) te je polimorfizam ApoE gena povezan s razvojem inzulinske rezistencije (74).

U skupini gena povezanih s metabolizmom energije uključen je polimorfizam UCP i ADRB gena. Beta adrenoreceptori (ADRB1, ADRB2, ADRB3) simpatičkog sustava zauzimaju bitno mjesto u reguliraju potrošnje energije i lipolizi dok uncoupling protein 1 i 2 (UCP1 I UCP2) imaju bitnu ulogu u održavanju homeostaze energije kod ljudi; uključeni su u regulaciju sinteze ATP-a, proizvodnju ROS (reaktivnih vrsta kisika) i glukozom stimuliranu sekreciju inzulina iz beta stanica gušterače (75). Polimorfizam gena UCP povezan s povećanim vrijednostima inzulina natašte i inzulinskom rezistencijom dokazan je kod Danske (76) i Španjolske populacije (77), dok je polimorfizam ADRB gena povezan s višim razinama inzulina i inzulinskom rezistencijom te većom prevalencijom kod pojedinaca s višim BMI (78).

Polimorfizam gena zaduženih za kodiranje hormona i hormonskih receptorova obuhvaća skupinu većeg broja gena uključujući i polimorfizam gena koji kodiraju adiponektin (AMP1, ADIPOQ, ACRP30) i njegove receptore (ADIPO1 i ADIPOR2) koji su usko povezani s inzulinskom rezistencijom, metaboličkim sindromom, pretilošću i šećernom bolesti tip II (79). Prema pojedinim istraživanjima postoji direktna veza polimorfizma ovih gena i plazmatske razine inzulina i inzulinske rezistencije (80). Hormoni štitnjače povećavaju ekspresiju GLUT4 molekula u skeletnim mišićima i time unos glukoze u stanicu (81). Deiodenaza tip 2 (D2) uzrokuje konverziju T4 u T3 i ima ključnu ulogu održavanja uredne razine T3 u pojedinim tkivima (81). Polimorfizam D2 gena povezan je sa smanjenim odlaganjem glukoze u nedijabetičara i povećanom prevalencijom inzulinske rezistencije u Pima Indijanaca i Meksičkih Amerikanaca (82), dok je polimorfizam TSHR gena povezan s relativnom inzulinskom rezistencijom (83). Visoke razine cirkulirajućeg SHBG (sex hormone binding protein) povezane su sa smanjenim rizikom nastanka šećerne bolesti tip 2 (84), dok su pak određeni polimorfizmi SHBG gena povezani s tom bolesti (85). Polimorfizam gena za leptin (LEP) i njegov receptor (LEPR) također su povezani s inzulinskom rezistencijom. U pojedinim studijama polimorfizam LEPR gena povezan je s inzulinom i metabolizmom glukoze kod žena u postmenopauzi s poremećenom homeostazom glukoze (86), dok je u drugoj studiji isti polimorfizam povezan s visokim razinama inzulina, HOMA i leptina u muških nedijabetičara (87). Retinol vežući protein 4 (RBP4) je adiponektin koji potencijalno sudjeluje u sistemskoj inzulinskoj rezistenciji (88). Polimorfizam RBP4 gena povezan je s

Renin-angiotenzinski sustav igra bitnu ulogu u regulaciji inzulinske osjetljivosti (93). Mnoga istraživanja bavila su se povezanošću polimorfizmom gena angiotenzin-converting enzima i inzulinske rezistencije, no rezultati su kontroverzi te su potrebna daljnja istraživanja na tom području.

Skupina gena povezanih s upalnim mehanizmima obuhvaća polimorfizam TNF-α i IL-6 gena. TNF-α predstavlja multifunkcionalni proinflamatorni citokin čija povišena razina uzrokuje smanjenu fukciju beta stanica, poremećenu homeostazu glukoze i time povećava rizik nastanka inzulinske rezistencije (94). Cirkulirajuće razine TNF-alfa nalaze se u uskoj korelaciji s inzulinskom rezistencijom i šećernom bolesti tip 2 (95). Proinflamatorni citokin interleukin-6 (IL-6) povezan je s inzulinskom rezistencijom i šećernom bolesti tip 2 (96). Obzirom da su različite studije istog polimorfizma gena IL-6 dale oprečne rezultate pretpostavlja se da bitnu ulogu u modeliranju tog odnosa imaju drugi genetski faktori u kombinaciji s okolišnim faktorima.
1.2.3. ULOGA MASNOG TKIVA I UPALE U INZULINSKOJ REZISTENCIJI

Danas se razlikuju tri ciljna tkiva najjačeg inzulinskog djelovanja-skeletni mišići, jetra i masno tkivo te su upravo u tim tkivima posljedice inzulinske rezistencije najjače izražene. Povećana dostupnost i iskorištavanje slobodnih masnih kiselina (FFA) pridonosi razvoju mišićne inzulinske rezistencije (97-100), povećanju endogene produkcije glukoze stimulacijom ključnih enzima i snabdijevanjem energije za glukoneogenezu (101), dok glicerol nastao tijekom hidrolize triglicerida služi upravo kao glukoneogenski substrat (102).

Masno tkivo je u mogućnosti regulacijom razine cirkulirajućih FFA i sekrecijom adipokina modelirati metabolizam glukoze cijelog tijela. Molekularni mehanizam poremećaja inzulinskog signala djelovanjem FFA nije u potpunosti razjašnjen, no prevladava mišljenje da uzrok poremećene aktivnosti inzulin stimuliranog transporta glukoze leži u povećanju intramiocelularnih metabolita lipida poput fatty acyl CoAs i diacilglicerola (DAG) koji aktivacijom kaskade serin/treonin kinaza i fosforilacijom inzulin receptor supstrata dovode do poremećaja inzulinskog signala (103). Pojedine izoforme PKC predstavljaju te metabolite. Klasifikacija PKC izoformi je kako slijedi: klasične (cPKCa, βI, βII, γ), nove (nPKCδ, ε, θ, η) i atipične (aPKCζ, λ). Kalcij i diacilglicerol aktiviraju cPKC izoforme, nPKC izoforme aktivira samo DAG, dok aPKC izoforme ne aktiviraju niti Ca+2 niti DAG (104). Od svih izoformi smatra se da upravo nPKC izoforme imaju modulatornu ulogu u prijenosu inzulinskog signal, gdje nPKCδ, predstavlja kandidata koji uzrokuje fosforilaciju serinskih rezidua inzulinskog receptora (105).

Unutarstanično nakupljanje lipidnih metabolita aktivira serin kinaza kaskadu putem PKCe, što dovodi do smanjene aktivnosti inzulin receptor kinaze te krajnje do smanjene tirozinske fosforilacije IRS-2, smanjenje aktivnosti PI3K povezane s IRS-2 i smanjene AKT2 aktivnosti (106).

Poremećen prijenos inzulinskog signala dovodi do smanjene aktivnosti glikogen sintaze što dovodi do smanjenog inzulin stimuliranog unosa glukoze u jetru i smanjene hepatalne proizvodnje glukoze. Smanjena aktivnost AKT2 dovodi do smanjene fosforilacije FOXO (forkhead box protein O) omogućavajući njegov ulaz u jezgru i aktiviranje prijepisa o brzini ovisnih enzima glukoneogeneze (fosfoenolpiruvat karboksikinaze, glukoza-6-fosfat fosfataze). Povećana glukoneogeneza pojačava jetrenu inzulinsku rezistenciju i rezultira hiperglikemijom natašte (106-108).
Masno tkivo se unutar ljudskog tijela nalazi raspoređeno u dva oblika: bijelo masno tkivo (WAT) i smede masno tkivo (BAT). Smede masno tkivo je uključeno u modulaciju tjelesne temperature, termogenezu induciranu hladnoćom i prehranom, potrošnju energije i pretišćtu (109-110), dok su adipociti bijelog masnog tkiva specijalizirani u pohranu energije u obliku pojedinačnih kapljica triacilglicerola (TAG), zaštiti drugih organa i tkiva od ektotipične akumulacije masti odnosno lipotoksičnosti (111). Bijelo masno tkivo osim adipocita sadrži matriks sazdan od kolagena i retikularnih vlakana, živčana vlakna, stromovaskularne stanice, limfne čvorove, imunološke stanice u obliku makrofaga, fibroblaste i preadipocite koji imaju mogućnost sekcije bioaktivnih produkata (112-113). Adipociti posjeduju receptore za pojedine hormone, citokine i faktor rasta te proizvode adipokine: TNF-α, leptin, adiponektin i rezistin, koji utječu na homeostazu glukoze u organizmu (114).

Obzirom na navedeno može se reći da se masno tkivo ponaša kao endokrini organ.

Na molekularnoj razini TNF-α povećava serinsky fosforilaciju IRS-1 i smanjenje ekspresije GLUT i time pridonosi inzulinskoj rezistenciji (115). Uloga leptina u regulaciji unosa hrane i potrošnji energije je poznata te se kod pojedinaca s deficitom ili mutacijom leptinskih receptora razvija teška pretišća (116-117), dok razina adiponektina korelira s inzulinskom osjetljivostjo.

Kroz složenu mrežu djelovanja bijelo masno tkivo sudjeluje u modeliranju važnih bioloških procesa koji uključuju unos hrane, metabolizam energije, neuroendokrine i imunološke funkcije, angiogenezu, regulaciju krvnog tlaka i upalu. Nakupljanje masnog tkiva tijekom razvoja pretišća karakterizirano je hipertrofijom (povećanjem veličine adipocita radi povećanog nakupljanja lipida) i hiperplazijom (povećanjem broja adipocita radi diferencijacije preadipocita u zrele adipocite) adipocita (118), povećanom angiogenezom, infiltracijom makrofaga, proizvodnjom komponenti vanstaničnog matriksa, aktivacijom endotelnih stanica te produkcijom i otpuštanjem pojedinih medijatora upale (119, 120). Adipociti otpuštaju mnoge proupalne molekule, no veliki broj nastaje od strane makrofaga koji infiltriraju bijelo masno tkivo. Produkcija i poremećaj odnosa proupalnih i protupalnih citokina/adipokina kod pretišlih osoba dovodi do stanja kronične upale organizma te dolazi do razvoja metaboličkih poremećaja i kardiovaskularnih bolesti povezanih s pretišću poput inzulinske rezistencije, metaboličkog sindroma i ateroskleroze.

Pretišće je rezultat prethodno spomenute hipertrofije i hiperplazije (adipogeneze) masnih stanica. Povećanje veličine adipocita je limitirani proces te u trenutku kada rast adipocita dosegne svoj maksimum iznad kojeg više nije u mogućnosti dalje pohranjivati mast dolazi do
regrutacije novih stanica iz samog tkiva. Unutar masnog tkiva 15-50% masnih stanica predstavlja rezervoar mezenhimalnih stanica uključujući preadipocite koji se mogu podijeliti i diferencirati u odgovoru na različite vanstanične podražaje. U trenutku kada adipociti više nisu u mogućnosti pohranjivati mast postaju lipolitični. Tim procesom dolazi do povećanja slobodnih masnih kiselina u plazmi koje mogu oštetiti funkciju neadipoznih organa što se naziva lipotoksičnošću (121).

Lipotoksičnost predstavlja jedan od uzroka inzulinske rezistencije.

Sami adipociti nisu podložni lipotoksičnosti jer posjeduju sposobnost detoksifikacije masnih kiselina (122). Uz bijelo i smeđe masno tkivo postoji i perivaskularno masno tkivo (PVAT) koje se nalazi oko velikih sistemskih krvnih žila. Adipociti PVAT-a nalaze se na adventiciji krvnih žila neodovjene od fascijalnog sloja ili elastične lamine (123) i oslobađaju niz citokina i kemokina koji mogu utjecati na vaskularnu fiziologiju i igraju bitnu ulogu u nastanku vaskularnih bolesti poput ateroskleroze (124, 125). Uz citokine PVAT luči i adipocitokine poput leptina i visfatina koji imaju proaterogeno i protombocitno djelovanje putem kemotaksije i aktivacije upalnih stanica uzrokujući tako endotelsku disfunkciju i stimulirajući proliferaciju stanica glatkih mišića i njihovu migraciju (126, 127). U stanju pretilosti dolazi do povećanja PVAT mase, hipertrofije perivaskularnih adipocita i otpuštanja citokina i adipocitokina. Upravo prethodno opisani upalni mehanizam predstavlja moguću poveznicu razvoja vaskularnih komplikacija i pretilosti.

U podlozi nastanka inzulinske rezistencije povezane s pretilosti nalazi se stanje kronične upale koju uzrokuju prouzroči prouzročeni osobođeni od strane makrofaga te prouzročeni citokini koje proizvode hipertrofični adipociti. Hipertrofični adipociti su uzrok nedovoljne opskrbe krvi zbog povećanja veličine tkiva što vodi hipoksiji, upali i povećanoj infiltraciji makrofaga u tkivo (128) te predstavljaju glavne proizvođače prouzročeni citokini: TNFα, IL-6, rezistin i MCP1 i smanjene proizvodnje adiponektina. TNFα u bijelom masnom tkivu uzrokuje smanjenje ekspresije i aktivnosti PPARgama, lipoprotein-lipaza i GLUT-4 što krajnje rezultira smanjenjem unosom glukoze, esterifikacijom FFA i njihovom pohranom (129, 130). U jetri TNFα paralelno pojačava ekspresiju gena uključenih u de novo sintezu kolesteroli i masnih kiselina i smanjuje ekspresiju gena uključenih u unos glukoze, metabolizam i oksidaciju masnih kiselina (131). Svojim djelovanjem TNFα povišuje razinu FFA u plazmi što pridonosi razvoju inzulinske rezistencije.
IL-6 je klasificiran kao proupalni, ali i protuupalni adipokin, obzirom da u pojedinim stanjima djeluje defenzivno, no u kroničnoj upali djeluje proupalno (132). Luče ga mnoge stanice u ljudskom tijelu: endotelne stanice, keratinociti, osteoblasti, miociti, adipociti, beta stanice gušterače, monociti, makrofazi te mnoga druga tkiva uključujući i pojedine tumore (133). Bijelo masno tkivo sudjeluje s vrijednostima od 10-35% ukupne količine bazalnog cirkulirajućeg IL-6, no 90% IL-6 u masnom tkivu proizvod je drugih stanica, a ne samih adipocita (134). Ovaj adipokin smanjuje hepatopulnu sintezu glikogena ovisno o inzulinu i unos glukoze u adipocite te uzrokuje lipopilitičku aktivnost bijelog masnog tkiva.

Adipociti oslobađaju i MCP-1 (monocitni kemoatraktantni protein 1), faktor koji predstavlja potentnog kemotaktoa monocitne i makrofagne infiltracije. Danas se upravo MPC-1 smatra upalnom karikom koja povezuje pretilost i razvoj inzulinske rezistencije. Fiziološke razine MPC-1 u stanicama skeletnih mišića smanjuju inzulinom stimuliranu fosforilaciju AKT, GSK3alfa i GSKbeta proteina smanjujući signalni put inzulina i unos glukoze ovisan o inzulinu (135). Pretjerana ekspresija MCP-1 u WAT-u smanjuje inzulinom stimuliranu tirozninsku fosforilaciju IR i IRS-a i smanjuje fosforilaciju AKT u skeletnim mišićima i jetri uzrokujući inzulinsku rezistenciju kod miševa (136).

1.2.4. MITOHONDRIJSKA DISFUNKCIJA I INZULINSKA REZISTENCIJA

Smeđe masno tkivo tijekom adaptivne termogeneze pretvara mitohondrijsku energiju u toplinu, dok karakteristike mitohondrijskih funkcija bijelog masnog tkiva nisu u potpunosti razjašnjene (137, 138). Proteomske analize smedeg i bijelog masnog tkiva kod miševa pokazale su sličnost mitohondrija BAT-a i mišičnih mitohondrija, dok su kod mitohondrija WAT-a izraženi proteini povezani s anaboličnom funkcijom te proteini uključeni u degradaciju ksenobiotika. Prema posljednjim istraživanjima mitohondrijska biogeneza i metabolizam uključeni su u regulaciju raznih procesa unutar WAT-a poput: preadipocitne proliferacije, adipogeneze, metabolizma ugljikohidrata i masti, adipocitne dediferencijacije, nakupljanja triglicerida i postizanja funkcija sličnih BAT-u (137-141). Glavnu funkciju mitohondrija uz sintezu ATP-a predstavlja odstranjivanje cirkulirajućih FFA putem beta oksidacije koja se odvija u tkivima bitnim za homeostazu glukoze poput jetre, mišića i masnog tkiva (142). Poremećaj mitohondrijske beta oksidacije masnih kiselina uz povećani unos glukoze u WAT-u može rezultirati nakupljanjem triglicerida u preadipocitima (143) te mišićnom (144), jetrenom inzulinskom rezistencijom (145) i lipotokičnosti beta stanica.
gušterače (141.). Upala WAT-a inducira citokinima uzrokovani inzulinsku rezistenciju adipocita, potiče lipolizu i oslobađanje masnih kislelina u citosolu (141), dok povećanje oksidativnog kapaciteta WAT-a korelira sa smanjenjem lokalnog upalnog odgovora (146). Ista istraživanja pokazala su da poremećaj mitohondrijske biogeneze pridonosi nastupu pretilosti i povezanih metaboličkih poremećaja poput inzulinske rezistencije (141) te mitohondriji predstavljaju ciljne stanice koje su u mogućnosti popraviti inzulinsku osjetljivost cijelog tijela upravo putem biogeneze mitohondrija WAT-a, povećanjem unosa masnih kiselina te njihovom oksidacijom koja štiti od hipertrofije adipocita.

1.2.5. INZULINSKA REZISTENCIJA I KARDIOVASKULARNA HOMEOSTAZA

Inzulin djeluje na stanice aktiviranjem kompleksog signalnog puta i danas se razlikuju dva signalna puta. Jedan predstavlja prethodno detaljno opisani put ovisan o fosfatidilinozitol 3-kinazi (PI3K) koji je zadužen za posredovanje metaboličkih djelovanja inzulina uključujući regulaciju metabolizma glukoze u mišićima, masnom tkivu i jetri te proizvodnju nitričnog oksida (NO) u endotelu i vaskularnim glatkim mišićima (VSMC) (147-150). Drugi signalni put predstavlja put ovisan o MAPK (mitogen aktivirana protein kinaza) koji posreduje u nemetoboličkoj aktivnosti inzulina koja uključuje mitogeni i proliferativni učinak, sekreciju endotelin-1 (ET-1) od strane endotelnih stanica i povećanu ekspresiju adhezivnih molekula na vaskularnom endotelu (151,152).

Oba signalna puta sudjeluju u održavanju kardiovaskularne homeostaze: prvi o NO ovisni signalni put uzrokuje vazodilataciju, pad vaskularne rezistencije, rast protoka krvi te stimulira regrutaciju kapilara dok drugi o ET-1 signalni put uzrokuje vazokonstrikciju koja pridonosi aktivaciji već prethodno od strane inzulina aktiviranog simpatičkog sustava uzrokujući tako pro-hipertenzivno djelovanje i ubrzavajući aterosklerotsku oštećenja (153,154). Inzulinska rezistencija uzrokuje poremećaj metaboličkog o PI3K ovisnog signalnog puta dok nemetabolički o MAPK ovisni signalni put ostaje uredan (155,156). Hiperinzulinemija koja je sastavni dio inzulinske rezistencije dovodi do pretjerane aktivnosti o MAPK ovisnog signalnog puta i time uzrokuje disbalans djelovanja dva signalna puta (157,158). Kompenzatorna hiperinzulinemija s ciljem održavanja euglikemije pretjerano stimulira nepogođeni MAPK ovisni put što dovodi, kao krajnja posljedica disbalansa djelovanja dva
signalna puta, do pretjerane proizvodnje vazokonstriktornih medijatora (ET-1) i smanjene sinteze NO što krajnje uzrokuje vazokonstriktorno djelovanja koje predstavlja jednu od glavnih karakteristika disfunkcije endotela (151, 159, 160). Hiperinzulinemija uzrokuje hipertenziju putem prethodno spomenutog povećanja sekrecije ET-1, pojačanog djelovanja simpatičkog sustava te induciranjem antinatriuretskog efekta putem pojačane apsorpcije natrija u distalnim tubusima bubrega (161).

Prema mnogim studijama inzulinska rezistencija procijenjena HOMA-IR indeksom predstavlja neovisni prediktivni faktor rizika kardiovaskularnih bolesti. The San Antonio Heart Study je pokazala značajnu neovisnu povezanost HOMA-IR s rizikom kardiovaskularnog incidenta kod Meksičkih Amerikanaca i bjelaca nehispanskog porijekla i to u vrijednostima gdje je porast vrijednosti HOMA-IR indeksa za 1 jedinicu povezan s povećanjem kardiovaskularnog rizika za 5.4% (162). Studija The Study of Inherited Risk of Coronary Atherosclerosis dokazala je da su leptin i HOMA-IR snažno i neovisno povezani s kalificacijom koronarnih arterija (163). Paralelno je druga populacijska studija pokazala prediktivnu vrijednost HOMA-IR za kardiovaskularne bolesti nakon korekcije za spol, dob, pušenje i LDL-C (164). Ista studija pokazala je da kod pojedinaca s inzulinom rezistencijom relativni rizik krajnjeg kardiovaskularnog ishoda iznosi 1.49, dok je 50% pojedinaca razvilo različiti stupanj dijastoličke disfunkcije lijevog ventrikula s relevantnim porastom rizika srčanog zatajenja. Bruneck populacijska studija potvrdila je da je inzulinska rezistencija procijenjena HOMA-IR indeksom povezana s većom incidencijom kardiovaskularnih incidenta u općoj populaciji neovisno od ostalih poznatih kardiovaskularnih rizika (165). Autori studije smatraju da bi liječenje inzulinske rezistencije trebalo biti jedan od ciljeva u smanjivanju rizika kardiovaskularnih bolesti.
1.2.6. INZULINSKA REZISTENCIJA CENTRALNOG ŽIVČANOG SUSTAVA

Inzulinski receptori se u velikom broju nalaze rasprostranjeni unutar centralnog živčanog sustava (CNS). Inzulin svoje učinke unutar CNS-a postiže aktivacijom inzulinskih receptorara i daljnjim prijenosom inzulinskog signala unutar stanica (166). Djelovanje inzulina posredovano je kompleksnim signalnim putevima koje je moguće pojednostaviti na dva osnovna puta: fosfatidilinozitol 3-kinaza (PI3K)/protein kinaza B (AKT) signalni put koji je prethodno detaljno opisan te MAPK signalni put (167). Inzulin vezanjem za inzulinske receptore uzrokuje konformacijske promjene istih što dovodi do aktivacije tirozin kinaze i posljedično do autofosforilacije receptora i fosforilacije obitelji proteina inzulin receptor supstrata (IRS). Fosforilacija IRS-1 i IRS-2 potiče aktivaciju različitih efektornih molekula uključujući i PI3K koja putem fosfoinozitid ovisne kinaze-1 potiče aktivaciju serin/treonin kinaze Akt koja po svojoj aktivaciji inhibira glukogen sinteza-kinazu 3. Istovremeno fosforilirani IRS potiču aktivnost Ras koji predstavlja inicijatora MAPK signalnog puta koji krajnje rezultira aktivacijom extracellulair signal-regulated kinaze.

Obilje inzulinskih receptorara u hipokampusu, amigdali i kortexu govori u prilog inzulinskom sudjelovanju u regulaciji sinaptičke aktivnosti i kognitivnih procesa. Prema pojedinim istraživanjima inzulin modelirajući sinaptičku plastičnost, gustoću, neurotransmisiju i odraslu neurogenezu utječe na učenje i pamćenje (168). Primjena inzulina kod štakora dovela je do poboljšanja učenja i pamćenja (169), dok je isti učinak primjećen kod zdravih osoba nakon intranazalne primjene (170), dodatno je kod ljudi nakon sistemske primjene zamijećeno poboljšanje u verbalnom pamćenju i pozornosti (171). Sam molekularni mechaniizam nije u potpunosti razjašnjen no smatra se da je PI3K signalni put uključen u sam mehanizam obzirom da nakon centralne primjene inzulina dolazi do povećanja pamćenja putem PI3K signalnog puta (172). Inzulin također djeluje na sinaptičku plastičnost modelirajući aktivnost eksctatornih i inhibitornih receptorara (glutamatnih i gama-aminobuterinskih receptorara) i poticanjem signalnog puta koji mijenja ekspresiju gena uključenih u integraciju dugoročnog pamćenja (173).

Inzulinska rezistencija, pretilost i starenje imaju mnogo zajedničkih točaka. Centralna inzulinska rezistencija u pretilih primarno je povezana s dijetom bogatom mastima, a nije isključivo posljedica same debljine. Tako je samo akutno izlaganje dijete bogatoj mastima dovoljno da izazove hipotalamičku inzulinsku rezistenciju neovisno o pretilosti (174). Prema

1.2.7. MJERENJE INZULINSKE REZISTENCIJE

Metode mjerenja inzulinske rezistencije moguće je podijeliti u tri glavne kategorije kako slijedi: dinamički testovi, biokemijski markeri i jednostavni indeksi (183).

U grupu dinamičkih testova spadaju hiperinzulinemička euglikemična klamp tehnika- HEC (hyperinsulinaemic euglycaemic clamp) i alternativna tehnika čestog mjerenja intravenozne tolerancije glukoze FSIVGTT (frequently sampled intravenous glucose tolerance test).

HEC predstavlja zlatni standard mjerenja periferne inzulinske rezistencije i prvi je izbor u istraživanjima gdje je inzulinska rezistencija ciljni interes istraživanja (184). Radi se o metodi stanja ravnoteže koja zahtjeva konstantnu infuziju inzulina i glukoze. Nakon cijelonoćnog gladovanja, inzulin se primjenjuje intravenozno konstantnom brzinom 5-120 mU/m2/min. Time se postiže stanje ravnoteže s razinama inzulina višim od razina natašte (hiperinzulinemija). Posljedično tome dolazi do povećanog odlaganja glukoze u mišićima i masnom tkivo, dok je jetrena proizvodnja glukoze blokirana. Potom se primjenjuje 20% dekstroza intravenozno i mjeri se razina glukoze u intervalima od 5-10 minuta sve dok se ne postigne euglikemično stanje. Pojedinci paralelno primaju infuziju kalij fosfata radi sprečavanja hipokalijemije uzrokovane hiperinzulinemijom i povećanim odlaganjem glukoze. Nakon nekoliko sati konstantne infuzije inzulina postiže se stanje ravnoteže plazmatske razine inzulina, glukoze i brzine infuzije glukoze (GIR). Pretpostavljajući da je hiperinzulinemično stanje dovoljno za totalnu supresiju jetrene proizvodnje glukoze te obzirom da nema promjene razine glukoze u uvjetima stanja ravnoteže GIR mora biti jednak razini odlaganja glukoze. Time je moguće direktno odrediti odlaganje glukoze u cijelom tijelu pri poznatoj razini hiperinzulinemije. Stanje ravnoteže se definira kao razdoblje duže od 30 minuta (najmanje sat vremena nakon započete infuzije inzulina) gdje je koeficijent varijacija za razinu glukoze u krvi, inzulina u plazmi i GIR-a manji od 5%. Mjerenje IR putem HEC metode odvija se u nefiziološkim uvjetima te se metoda ne smatra metodom izbora u istraživanjima procjene inzulinskog djelovanja i dinamike glukoze u fiziološkim uvjetima. Metoda je invazivna, komplicirana, skupa, zahtjeva educirano osoblje i posebne uvjete rada te se HEC ne primijenjuje u svakodnevnom kliničkom djelovanju.
FSIVGTT predstavlja srebrni standard mjerenja IR i oslanja se na dinamičko stanje organizma (185). Podaci se dobivaju prije i nakon intravvenozno danog bolusa glukoze te se inzulinska rezistencija mjeri indirektno. Nakon noćnog gladovanja, glukoza se primjenjuje intravvenozno svake 2 minute, počevši u vrijeme 0 u koncentraciji 0,3g/kg tjelesne mase. Modificirani FSIVGTT primjenjuje egzogeni inzulin u dozi 4mU/kg/min svakih 5 minuta započevši 20 minuta nakon primjene intravvenozne glukoze te se skupljaju uzorci krvi za procjenu razine glukoze i inzulina u vrijeme: -10, -1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 22, 23, 24, 25, 27, 30, 40, 50, 60, 70, 80, 90, 100, 120, 160 i 180 minuta. FSIVGTT tehnika zahtjeva analitički model izračunavanja indeksa osjetljivosti inzulina putem MINIMOD kompjuterskog programa te je moguće također izračunati efikasnost glukoze, aktivnost beta stanica, akutni inzulinski odgovor, indeks dostupnosti te područje ispod krivulje.

S napretkom znanosti i tehnologije cijeli niz molekula našao se u centru pozornosti kao potencijalni markeri u procjeni inzulinske rezistencije. U tu grupu spadaju IGFBP-1 (proteini koji se vežu na inzulinu slične čimbenike rasta-1), sCD36 (toplivi CD36), C-reaktivni protein (CRP), feritin, adiponektin, faktor nukeze alfa (TNF-α), rezistin, C3 complement, glikozilirani hemoglobin (HbA1c), protein kinaza C (PKC) u mikroangiopatiji te SHBG u hiperandrogenom sindromu.

IGFBP-1 je u dobroj korelaciji s FSIVGTT kod djece mlade od deset godina te njegova razina pada s inzulinskom rezistencijom i pretilošću (186).

Makrofag CD36 predstavlja ključnu proaterogenu molekulu koja odstranjuje oksidirane lipoprotein male gustoće uzrokujući stvaranje pjenušavih stanica. Hiperglikemija i promijenjeni inzulinski signalni put makrofaga u inzulinskoj rezistenciji uzrokuju povećanu ekspresiju CD36 (187) te je razina sCD36 povišena kod inzulinske rezistencije i pacijenata oboljelih od šećerne bolesti tip II.

C-reaktivni protein jedan je od nabole plućenih markera sistsmske subkliničke upale i ima možebitnu prognostičku vrijednost prediktivnog rizika razvoja kardiovaskularnih incidenata u budućnosti. Razina CRP-a koreliira s povišenom razon triglicerida, smanjenom razinom HDL, povišenim krvnim tlakom i povišenim razinama glukoze natašte. Pojedine studije su utvrdile povezanost CRP i inzulinske rezistencije neovisno o pretilosti. Razina CRP-a bila je usko povezana sa indirektnim mjerama inzulinske rezistencije poput razine inzulina natašte, Raynoud indeksa, QUICKI, HOMA, McAuley i Avignon indeksa te odnosa inzulin-glukoza kod nedijabetičara (188).
Feritin predstavlja glavni unutarstanični protein pohrane željeza, povezuje ga se s hiperinzulinemijom i hipertrigilceridemijom, dok su pojedine studije pokazale njegovu povezanost s markerima inzulinske rezistencije: HOMA-IR te razinom inzulina natašte (189). Adiponektin kao multifunkcionalni protein koji smanjuje jetrenu proizvodnju glukoze, povećava unos glukoze i oksidaciju masnih kiselina u skeletnim mišićima smatra se glavnom molekulom u patogenezi metaboličkog sindroma. Razina adiponektina je smanjena u stanju pretilosti te je u obrnutoj korelaciji sa stanjem inzulinske rezistencije i visokim razinama CRP-a (190). Hipoadiponektremija povezana je s porastom inzulinske rezistencije i povećanim rizikom razvoja šećerne bolesti. TNF-α, rezistin i C3 komplement su u dobroj korelaciji s HOMA-IR, a HbA1c je potencijalni prediktor inzulinske rezistencije.

Sve navedene molekule imaju potencijal surogat markera inzulinske rezistencije prema mnogobrojnim istraživanjima obzirom na dobrou korelaciju s drugim metodama procjene inzulinske rezistencije, no niti jedna do danas nije zauzela poziciju u rutinskoj primjeni procjene inzulinske rezistencije.

Jednostavni indeksi inzulinske rezistencije prema definiciji obuhvaćaju indekse koji ne zahtjevaju intravenoznu administraciju egzogene glukoze ili inzulina niti uvjete stanja ravnoteže. Oni su najčešće korištena metoda mjerenja inzulinske rezistencije zbog jednostavnosti primjene i relativno niske cijene. Procjena jednostavnih indeksa moguća je iz uzorka dobivenog natašte ili u kombinaciji uzroka dobivenog natašte s uzorkom običnog nanon oralnog opterećenja glukozom. Indeksi dobiveni iz uzoraka uzetih natašte pouzdani su kod pojedinaca s urednim lučenjem inzulina, dok su nepouzdani kod starijih pacijenata s nekontroliranim razinama inzulina ne pokazuju razinu inzulinske rezistencije obzirom da beta stanice nisu u mogućnosti izlučiti dovoljnu količinu inzulina da bi nadvladale već postojeću inzulinsku rezistenciju stoga je prije odluke za odabir jednostavnog indeks inzulinske rezistencije preporučljivo procijeniti glikemijski status pojedinca prema WHO kriterijima.

Prema autorima posljednje objavljene meta analize u slučaju nemogućnosti provedbe HEC preporučeni jednostavni indeks određivanja inzulinske rezistencije je revised QUICKI (quantitative insulin sensitivity check) (191). Revised QUICKI osim analize razine glukoze i inzulina natašte, zahtjeva analizu NEFA (neesterificirane masne kiseline) iz natašte uzetog
uzorka. Analiza neesterificiranih masnih kiselina ne provodi se u svakodnevnoj kliničkoj dijagnostici radi posebno dizajnirane opreme koju ta analiza zahtjeva.

U slučaju da se procjena inzulinske rezistencije oslanja na uzroke dobivene natašte, bez mogućnosti analize NEFA iz uzorka, najbolji odabir tada predstavljaju QUICKI, log HOMA-IR ili HOMA-%S.

Autori na osnovu provedene meta analize u slučaju odluke za indeks baziran na OGTT preporučuju Stumvoll MCR, Stumvoll ISI, OGIS, Matsuda, i Gutt jednostavni indeks.

Jačina korelacije različitih surogat metoda prema HEC je u najboljem slučaju umjerena čime u razmatranju odabira jednostavnog indeksa za procjenu inzulinske rezistencije bitnu ulogu igra cijena same izvedbe.

Stumvoll indeks uz plazmatsku razinu glukoze (mmol/l) i inzulina (pmol/l) izmjerenu tijekom OGTT-a u određenom vremenu koristi i demografske podatke o dobi, spolu i BMI u procjeni inzulinske osjetljivosti i funkcije beta stanica (192)

Stumvoll ISI = 0.156 - 0.0000459 × I(120) - 0.000321 × I(0) - 0.00541 × G(120)

Stumvoll ISI = 0.222 - 0.00333 × BMI - 0.0000779 × I(120) - 0.000422 × Age

Stumvoll ISI = 0.226 - 0.0032 × BMI - 0.0000645 × I(120) - 0.00375 × G(90)

Stumvoll MCR = 18.8 - 0.271 × BMI - 0.0052 × I(120) - 0.27 × G(90)

Matsuda indeks koristi podatke dobivene za vrijeme cijelog OGTT-a u obliku omjera plazmatske razine glukoze i inzulina i time predstavlja jetrenu i perifernu inzulinsku osjetljivost (193).

Matsuda = 10 000√G(0)xI(0)xG(srednji)xI(srednji)

Gutt indeks procjene inzulinske osjetljivosti (ISI) baziran je na podacima dobivenim za vrijeme OGTT-a i tjelesnom masom pojedinca (194).

GUTT ISI = [75,000 + (G0-G120) × 0.19 × BW]/(120 × log [(I0 + I120)/2] × [(G0 + G120)/2])

OGIS ili Oral Glucose Insulin Sensitivity index je indeks baziran na podacima dobivenim nakon izvršenog OGTT-a sa 75 grama glukoze (195). Indeks je najlakše moguće izračunati.
putem već pripremljenih excel tablica i kalkulatora dostupnih na internetu obzirom da je u izračunavanje uključeno 6 konstanti. Za izračunavanje OGIS-a potrebna je razina glukoze u vremenu 0, 90, 120 minuta i razina inzulina u vremenu 0 i 90 min kod provedbe 2-h OGTT ili vrijednost glukoze u vremenu 0, 120, 180 min i vrijednost inzulina 0 i 120 min ako se radi o 3-h OGTT.

QUICKI-Quantitative Insulin Sensitivity Check Index je empirički dobivena transformacija koncentracija glukoze i inzulina natašte (196). Predstavlja varijaciju HOMA jednadžbe koja pretvara podatke uzimajući u obzir i logaritam i recipročnu vrijednost umnoška glukoze i inzulina i time lagano zaobilazi raspodjelu vrijednosti inzulina natašte. QUICKI = 1/ (log (inzulin natašte mU/ml) + log (glukoza natašte mg/dl))

Indeks ima dobru linearnu korelaciju s HEC i HOMA. Upotreba ovog indeksa je limitirana kod pacijenata oboljelih od šećerne bolesti tip I zbog njihove smanjene sekcije inzulina te kod pacijenata s teškim oblikom šećerne bolesti koji nisu u mogućnosti prekinuti svoju terapiju. Također indeks ima manju snagu kod nepretilih pojedinaca zbog vrlo uskog raspona unutar kojih se nalaze vrijednosti glukoze i inzulina.

Revised-QUICKI je modificirani indeks koji u jednadžbu uključuje i razinu NEFA natašte (197) te ima bolju korelaciju s HEC u odnosu na QUICKI (198). Revised QUICKI = 1/(log(glukoza natašte mg/ml)+log(inzulin natašte µU/ml)+log(NEFA natašte mmol/l))

HOMA (Homeostatic model assessment) je homeostatski model procjene funkcije beta stanica i inzulinske rezistencije na osnovi bazalnih vrijednosti glukoze, inzulina ili C-peptida prvotno predstavljen 1985.godine (199). Model je izveden iz matematičke procjene interakcije funkcije beta stanica i inzulinske rezistencije u idealnom modelu koja se koristi za procjenu stanja ravnoteže koncentracije inzulina i glukoze te je kalibriran tako da za normalnu funkciju beta stanica daje vrijednost 100% i normalnu inzulinsku rezistenciju 1 (200). Predstavlja široko korištenu metodu procjene inzulinske rezistencije u kliničkim i epidemiološkim istraživanjima te je metoda citirana u preko 500 publikacija.
HOMA je paradigmski model koji procjenu inzulinske osjetljivosti i funkcije beta stanica bazira na plazmatskim koncentracijama glukoze i inzulina nataşte. Odnos glukoze i inzulina u bazalnom stanju reflektira balans hepatalne proizvodnje glukoze i inzulinske sekrecije koji je održan zahvaljujući povratnoj petlji između jetre i beta stanica. Pretpostavke korištene u modelu posljedica su istraživanja provedenih na ljudima i životinjama. Krivulja odgovora beta stanica prvotno je konstruirana na osnovi bazalne produkcijske razine od 10 mU/min (74 pmol/min) s plazmatskom koncentracijom glukoze od 4 mmol/l u inzulinskom području koje iznosi 13 litara s poluvremenom raspada inzulina od 4 minute. Hepatalna proizvodnja i unos modelirani su tako da ovise o plazmatskoj koncentraciji glukoze i inzulina. Inzulin je modeliran s vremenom poluživota od 3.8 minuta i dodatno sporijom komponentom gdje koncentracija inzulina kontrolira unos glukoze u mišiće i masno tkivo. Pretpostavka je da bazalno istjecanje glukoze brzinom 0.8 mmol/min ulazi u prostor od 17 litara. Kod prosječnog čovjeka 50% bazalnog obrtaja glukoze se odvija unutar živčanog sustava i predstavlja proces ovisan o glukozi. Ostatak obrtaja glukoze odvija se u mišićima i masnom tkivu gdje je on ovisan o glukozi i inzulinu. Pad funkcije beta stanica modeliran je promjenom odgovora beta stanica na plazmatske koncentracije glukoze. Inzulinska osjetljivost modelirana je proporcionalnim smanjenjem efekta plazmatske koncentracije inzulina na jetru i periferna tkiva. U bilo kakvoj kombinaciji obrtaj glukoze u modelu ostaje konstantan. U modelu ne postoji razlika između hepatalne i periferne inzulinske osjetljivosti.

HOMA1 predstavlja originalni HOMA model koji sadrži jednostavnu matematičku aproksimaciju originalnog nelinearnog rješenja jednadžbe. Jednadžba je vrlo jednostavna i nalazi se u širokoj uporabi za određivanje inzulinske rezistencije i funkcije beta stanica.

\[
\text{HOMA-IR} = \frac{\text{glukoza natašte (mmol/l)} \times \text{inzulin natašte (mU/ml)}}{22.5}
\]

\[
\text{HOMA-%B} = \frac{(20 \times \text{inzulin natašte (mU/ml)})}{(\text{glukoza natašte (mmol/l)} - 3.5)}
\]

HOMA2 je kompjuterski model i predstavlja nadograđeni HOMA1 model koji sadrži nelinearna rješenja. U model su unesene varijacije hepatalne i periferne rezistencije (smanjenje supresije hepatalnog izlaska glukoze uzrokovano hiperglikemijom i smanjenje perifernog glukozom stimuliranog unosa glukoze). Krivulja inzulinske sekrecije modificirana je na način da dopušta porast inzulinske sekrecije kao odgovor na plazmatsku koncentraciju glukoze veću od 10 mmol/l. U ovu verziju modela inkorporirani su procjena proinzulinske sekrecije čime je omogućeno korištenje radioimuno testova (RIA) i specifičnih testova za
određivanje razine inzulina te renalni gubici glukoze što omogućava primjenu modela i kod hiperglikemičnih pojedinaca. Putem kompjuterskog modela moguće je odrediti inzulinsku osjetljivost (%S) i funkciju beta stanica (%B) iz natašte uzet uzorka plazmatske glukoze, RIA inzulina, specifičnog inzulina ili C-peptida gdje je koncentracija inzulina iznosi između 1-2,200 pmol/l i 1-25 mmol/l za glukozu. Kompjuterski model izbacuje vrijednost inzulinske osjetljivosti izražene kao HOMA2-%S (gdje 100% predstavlja normalu) što je recipročna vrijednost HOMA2-IR. Model je dostupan putem interneta na www.OCDEM.ox.ac.uk te bi se HOMA2 model trebao koristiti kod usporedbi HOMA modela s drugim modelima.

HOMA je moguće procijeniti iz seruma i heparinizirane plazme, gdje su niže vrijednosti inzulina zamjećene u plazmatskim uzorcima. Preporuka je uzeti srednju vrijednost inzulina dobivenu iz 3 uzastopno uzeta uzorka u razmaku od 5 minuta radi pulsativne sekrecije inzulina u organizmu. U kliničkoj praksi u pravilu se uzima jedan uzorak koji se pokazao dostatnim za točnost procjene inzulinske rezistencije.

Razlike vrijednosti HOMA ovisno o vrsti uzorka iz kojeg se analizira i odabiru kalkulatora za izačunavanje su zamjetne, no male u usporedbi s dvostrukim razlikama u vrijednosti HOMA ovisno o vrsti testa korištenog za analizu razine inzulina (201).

Uspoređbe pojedinih HOMA studija nisu moguće u slučaju upotrebe različitih testova inzulina, a o vrsti inzulinskog testa ovisi i sam odabir HOMA kalkulatora (201).
1.3. HIPERGLIKEMIJA U AKUTNOJ BOLESTI

Hiperglikemija u akutnoj bolesti čest je nalaz kod pacijenata hospitaliziranih u jedinicama intenzivnog liječenja i predstavlja jedan od markera težine same bolesti (202).javlja se kod pacijenata s prethodno poznatom šećernom bolesti ili poremećajem metabolizma glukoze (IFG, IGT) ili kao prva manifestacija dotada nedijagnosticirane šećerne bolesti. Također je čest nalaz i kod pacijenta koji imaju uređan metabolizam glukoze prije i nakon hospitalizacije. Hiperglikemija u akutnoj bolesti povezana je lošim kliničkim ishodom uključujući morbiditet, mortalitet, dužinu hospitalizacije, infekcije i sveukupne komplikacije (203-206).

1.3.1. MEHANIZAM NASTANKA HIPERGLIKEMIJE U AKUTNOJ BOLESTI

U podlozi nastanka hiperglikemije u akutnoj bolesti nalazi se složeni mehanizam jedinstvenog odgovora organizma na stres i upalu. Stresni odgovor organizma karakteriziran je aktivacijom osi hipotalamus-hipofiza-nadbubrežna žlijezda i aktivacijom simpatičkog sustava. Razina odgovora organizma je gradirana i ovisi o jačini samog stresa te tako razina katekolamina i kortizola korelira s vrstom operacije, jačinom ozljede, GCS i APACHE bodovima (207). Povećano otpuštanje stresnih medijatora rezultira mnogobrojnim metaboličkim, kardiovaskularnim i imunološkim efektima s krajnjim ciljem pokušaja uspostavljanja homeostaze organizma. Zajedničko i sinergističko djelovanje osi hipotalamus-hipofiza-nadbubrežna žlijezda, simpatičkog sustava i proupalnih citokina (TNF-α, IL-1, IL-6) dovodi do nastanka hiperglikemije u akutnoj bolesti. Visoka opterećenja organizma glukozom iz hrane i intravenozno priljenih tekućina za vrijeme hospitalizacije također pridonose nastanku hiperglikemije u akutnoj bolesti.

Neuroendokrini odgovor organizma na stres karakteriziran je povećanom glukoneogenezom, glikogenolizom i inzulinskom rezistencijom.

Hiperglikemija u akutnoj bolesti pretežno je uzorkovana povećanom jetrenom proizvodnjom glukoze, a ne poremećenom perifernom ekstrakcijom glukoze.

Kortizol uzrokuje povećanje razine glukoze u krvi aktivacijom glavnih enzima uključenih u hepatalnu glukoneogenezu i inhibicijom unosa glukoze u periferna tkiva poput skeletnih mišića.
Hormon rasta potiče jetrenu glukoneogenezu i glikogenolizu te stimulira lipolizu i sintezu proteina. Također inhibira stanični unos glukoze s ciljem očuvanja glukoze za stanice ovisne o glukozi poput eritrocita i neurona, a djeluje direktno i putem stimulacije jetrene proizvodnje IGF-1.

Glukagon, iako potiče glikogenolizu, glukoneogenezu i lipolizu, uvelike ne pridonosi nastanku hiperglikemije u akutnoj bolesti. Adrenalin i noradrenalin stimuliraju hepatalnu glukoneogenezu i glikogenolizu dok noradrenalin dodatno povećava dostavu glicerola jetri putem lipolize. Promijenjeno otpuštanje adipokina (povećano otpuštanje cink-alfa 2 glikoproteina i smanjeno otpuštanje adiponektina) iz masnog tkiva te upalni medijatori TNF-α, IL-1, IL-6 i CRP igraju bitnu ulogu u razvoju inzulisne rezistencije putem mehanizama opisanih u prethodnom poglavlju (208).

1.3.2. POSLJEDICE HIPERGLIKEMIJE U AKUTNOJ BOLESTI

Prema pojedinim istraživanjima hiperglikemija u akutnoj bolesti prisutna je kod čak 68% pacijenata (209). Neovisni je prediktor smrtnosti u mnogim akutnim bolestima poput infarkta miokarda (210), traume, ozljede glave (211, 212) i inzulta te identificira pacijente s povećanim rizikom za razvoj šećerne bolesti nakon hospitalizacije (213-215). Mehanizmi kojima hiperglikemija oštećuje organizam u akutnoj bolesti slični su djelovanju hiperglikemije kod šećerne bolesti te uključuje smanjeni protok krvi kroz mozak, unutarstaničnu acidozu i smanjene razine ATP-a (216). Hiperglikemija primarno oštećuje stanice koje nisu u mogućnosti efektivno kontrolirati unutarstaničnu koncentraciju glukoze poput stanica kapilarnog endotela, neurona i bubrežnih mezangijalnih stanica. Povećana unutarstanična razina glukoze dovodi do povećanog protoka glikolitičkim putem i Krebsovim ciklusom što rezultira povećanom proizvodnjom reduciranih ekvivalenta, nikotinamid adenin dinukelotida (NADH) i sukcinata koji doniraju elektrone mitohondrijskom respiratornom lancu sa četiri enzimatska kompleksa. Elektroni prolazeći kroz lanac krajnje reduciraju kisik u vodu u kompleksu IV. Prolazak elektrona omogućava pumpanje hidrogen iona preko unutarnje mitohondrijalne membrane što proizvodi pH/protonski gradijent koji transmembranski enzim ATP sintaza koristi za proizvodnju ATP-a. Jačina gradijenta povezana je s proizvodnjom superoksida (217) i u normalnim uvjetima je usko kontrolirana. U stanju hiperglikemije povećana proizvodnja NADH i sukcinata dovodi do povećane
proizvodnje superoksida koji ima mogućnost oštećenja DNA s krajnjom aktivacijom poli-ADP riboza polimeraze (PARP). PARP inhibira gliceraldehid-3 fosfat dehidrogenazu (GAPDH), enzim s nizom djelovanja uključujući glikolizu (218). Inhibicija GAPDH omogućuje akumulaciju metabolita i aktivaciju četiri različita puta koji uzrokuju oštećenje stanice (216) koji su već detaljno prikazani te ovdje slijedi samo kratki podsjetnik.

1. Povećana aktivnost protein kinaze C (PKC). PKC ima mogućnost povećanja aktivnosti transkripcijskog faktora NF-kapaB koji kontrolira mnoge proupalne gene. Pojačana aktivnost NF-kapaB vidljiva je i nakon vrlo kratke epizode hiperglikemije (125), dok ekspresija proupalnih gena perzistira i nekoliko dana nakon rješavanja hiperglikemije. PKC smanjuje djelovanje endotelne sintetaze dušikovog monoksida (eNOS) i povećava djelovanje endotelin-1 što dovodi do poremećaja mikrovaskularne kontrole.

3. Povećano stvaranje AGE koji je u mogućnosti promijeniti proteine uključene u gensku transkripciju i vanstanični matriks.

4. Povećano djelovanje poliolskog puta. U slučaju povećane unutarstanične razine glukoze dio se reducira u sorbitol djelovanjem aldoza reduktaze koja inače nije uključena u normalni metabolizam glukoze. Aldoza reduktaza se natječe s glutation reduktazom za kofaktor NADPH oduzimajući tako stanici važan antioksidans-reducirani glutation.
1.3.2.1 HIPERGLIKEMIJA I INFEKCIJE

Hiperglikemija je rizični faktor za infekcije, povezana je s povećanim rizikom nakupljanja patogenih bakterija u bronhalnom stablu intubiranih pacijenata (219), dok su pacijenti oboljeli od šećerne bolesti sklonjeni infekcijama kirurških ran na, ulkusa stopala i infektivnim proljevima. Relativni porast bakterija zamjetljiv u hiperglikemiji posljedica je promijenjene imunološke obrane pacijenta. Hiperglikemija uzrokuje smanjenu neutrofilnu aktivnost (kemotaksiju, formaciju reaktivnih oblika kisika, fagocitozu bakterija) usprkos ubrzanoj dijapedezi leukocita u periferna tkiva te prethodno opisanim promjenama koncentracije proupalnih citokina. Kod dijabetičara opisana je smanjena kemotaksija polimorfonuklearnih leukocita i njihova baktericidnost (220) te je također zabilježena poremećena leukocitna fagocitoza. Krv zdravih hiperglikemičnih volontera nakon izlaganja endotoksinu pokazala je smanjenu ekspresiju IL-1 i NF-kapaB (221) te poremećenu neutrofilnu aktivnost (222).

1.3.2.2 HIPERGLIKEMIJA I TROMBOZA

Hiperglikemija uzrokuje hiperkoagulabilno stanje organizma. Jedan od mehanizama putem kojeg nastaje hiperkoagulabilnost organizma je hiperglikemijom uzrokovana pojačana ekspresija faktora tkiva. Hiperglikemija direktnim djelovanjem na glikokaliks dovodi do vulnerabilnosti vaskularnog endotela i omogućava adheziju trombocita i endotelnih stanica i otpuštanje faktora tkiva (223). Faktor tkiva koji djeluje prokoagulantno i proupalno aktivira faktor VII koagulacijske kaskade što rezultira generacijom trombina, proteaze koja pretvara fibrinogen u fibrin koji potom aktivira trombocite i uzrokuje koagulaciju. Istraživanje provedeno na zdravim volonterima koji su bili izloženi hiperglikemiji i endotoksinima pokazalo je više plazmatske razine topljivog tkivnog faktora i trombin-antitrombin kompleksa u usporedbi s kontrolnom normoglikemičnom skupinom što je dokaz o prokoagulabilnom stanju hiperglikemije (224). Drugi mehanizam predstavlja djelovanje hiperglikemije i hiperinzulinemije na PAI-1. PAI-1 (inhibitor plazminogen aktivatora 1) je serin proteaza koji inhibitorno djeluje na t-PA (tkivni aktivator plazminogena) koji predstavlja glavnog aktivatora plazminogena u koagulacijskoj kaskadi i time potiče fibrinolizu. Hiperglikemija i hiperinzulinemija uzrokuju pojačanu ekspresiju PAI-1 na stanicama vaskularnog endotela i njegovu koncentraciju i aktivnost. Posljedično dolazi do smanjenja aktivnosti t-PA i smanjenog fibrinolitičkog potencijala (225).
1.3.2.3 HIPERGLIKEMIJA I OSTALO

Hiperglikemija je povezana sa smanjenom peristaltikom crijeva koja predstavlja bitan faktor u porastu bakterija i njihovoj translokaciji. Istraživanja endotoksemije na glodavcima pokazalo je povezanost hiperglikemije i uništenja crijevne barijere i povećane translokacije bakterija (226). Dismolitet crijeva moguća je posljedica inhibitornog efekta hiperglikemije na vagalni živac (227). Agresivni pristup hiperglikemiji smanjuje incidenciju polineuropatije i miopatije u akutnoj bolesti (228). Jetreni uzorci skupljeni tijekom obdukcija pacijenata umrlih radi multiorganskog zatajenja koji su liječeni s ciljem uskih vrijednosti glukoze pokazali su manje oštećenje mitohondrijske ultrastrukture i veću aktivnost kompleksa respiratornog lanca u usporedbi s pacijentima koji su liječeni s liberalnijim ciljnim vrijednostima glukoze (229).

1.3.2.4 HIPERGLIKEMIJA U AKUTNOJ BOLESTI I KASNJI RAZVOJ ŠEĆERNE BOLESTI

Hiperglikemija u akutnoj bolesti povezana je sa šećernom bolesti. Redovit je nalaz kod pacijenata oboljelih od šećerne bolesti, dok kod pojedinaca s nedijagnosticiranom šećernom bolesti ponekad predstavlja prvu manifestaciju bolesti i potrebu daljnje obrade pojedinaca. U nedijabetičkoj populaciji hiperglikemija u akutnoj bolesti predstavlja rizični faktor razvoja poremećaja metabolizma glukoze i šećerne bolesti nakon hospitalizacije (213-215).

Retrospektivna kohortna studija s ciljem otkrivanja trogodišnjeg rizika razvoja šećerne bolesti kod nedijabetičara nakon hospitalizacije provedena je u Škotskoj (230). Studija je rađena na velikom broju ispitanika analizom podataka dobivenih iz nacionalnih registara. Uključeno je 86 634 pacijenata hitno hospitaliziranih na internističke i kirurške odjele u periodu 2004-2008 godine koji su praćeni minimalno 3 godine nakon hospitalizacije. Ukupni trogodišnji rizik razvoja šećerne bolesti kod pojedinaca starijih od 40 godina iznosio je 2.3%. Rizik nastanka šećerne bolesti kod hiperglikemije od 7.0 mmol/l iznosio je 2.6% (95% CI 2.5-2.7) te 9.9% (95% CI 9.2-10.6) kod vrijednosti hiperglikemije 11.1 mmol/l. U grupi pacijenata dobne skupine 30-39 godina rizik razvoja šećerne bolesti nakon hospitalizacije iznosio je 1.0% (95% CI 0.8-1.3) kod vrijednosti hiperglikemije 7.0 mmol/l te 7.8% (95% CI 5.7-10.7) kod hiperglikemije od 11.1 mmol/l. Iako studija ima ograničenja vezana za sam način provedbe,
ona ukazuje na povezanost hiperglikemije u akutnoj bolesti i razvoja šećerne bolesti nakon hospitalizacije i potrebu informiranja i edukacije pacijenata koji su razvili hiperglikemiju u akutnoj bolesti o potrebi promjene životnog stila.

Prospektivno istraživanje provedeno u Hrvatskoj također je pokazalo povezanost hiperglikemije u akutnoj bolesti i razvoja šećerne bolesti nakon hospitalizacije kod nedijabetičara (215). U istraživanje su bili uključeni svi pacijenti s negativnom anamnezom poremećaja metabolizma glukoze i šećerne bolesti hospitalizirani u jedinici intenzivnog liječenja u periodu 1998-2004 godine te su bili praćeni minimalno 5 godina. Od prvotno uključenih 1 105 pacijenata praćenje je započeto za njih 1 029, no zaključeno za 591 pacijenta. Razlozi smanjenju broja pacijenata koji su završili istraživanje leže u odustajanju pacijenata za vrijeme istraživanja, smrti pojedinaca, započetoj kortikosteroidnoj terapiji i novo dijagnosticiranoj šećernoj bolesti po samom otpustu iz bolnice. Relativno mali uzorak predstavlja ujedno i ograničenje ovog istraživanja. Obzirom da su u istraživanju sudjelovali svi hospitalizirani pacijenti autori su sudionike podijelili u dvije grupe ovisno o razini glikemije koju su razvili za vrijeme hospitalizacije. Granicu je činila razina glikemije od 7.7 mmol/l. Pacijenti koji su za vrijeme hospitalizacije u minimalno dva mjerenja imali izmjerenu vrijednost glukoze veću od 7.7 mmol/l ušli su u hiperglikemičnu skupinu, dok su normoglikemičnu skupinu činili svi ostali. Kod pacijenata iz hiperglikemične skupine rizik razvoja šećerne bolesti nakon hospitalizacije iznosio je 5.6 (95% CI 3.1-10.2), dok je rizik razvoja nekog od poremećaja metabolizma glukoze (IFG ili IGT) iznosio 2.3 (95% CI 1.6-3.4).

Istraživanje je pokazalo da hiperglikemija koja se razvije za vrijeme hospitalizacije u nedijabetičara predstavlja rizični faktor razvoja šećerne bolesti nakon hospitalizacije. Autori smatraju da bi hiperglikemične pacijente trebalo upozoriti na rizik i nakon hospitalizacije redovito kontrolirati radi pravovremenog otkrivanja poremećaja metabolizma glukoze i započinjanja terapije.
1.3.3. KONTROLA GLIKEMIJE U AKUTNOJ BOLESTI

Hiperglikemija u akutnoj bolesti dugo je shvaćana samo kao adaptivni mehanizam organizma potreban za preživljanje. Smatralo se da je hiperglikemija korisna organima kojima glukoza predstavlja izvor energije, a za unos im nije potreban inzulin (CNS, eritrociti, imunološki sustav). Tek u posljednje vrijeme kada je hiperglikemija postala temom mnogobrojnih istraživanja i studija, cijeli niz istraživanja pokazao je povezanost hiperglikemije u akutnoj bolesti s lošijim kliničkim ishodom.

Tako pacijenti hospitalizirani radi traume koji su razvili hiperglikemiju imaju povećanu smrtnost, duži boravak u bolnici i jedinicama intenzivnog liječenja i incidenciju nozokomijalnih infekcija (231-234) u usporedbi s normoglikemičnim pacijentima. Kod pacijenata s traumatskom ozljedom mozga hiperglikemija je povezana s lošijim neurološkim ishodom i povećanim intrakranijskim tlakom (235,236). Internistički i kirurški pacijenti koji su za vrijeme hospitalizacije u jedinicama intenzivnog liječenja bili hiperglikemični imali su veću smrtnost u usporedbi s normoglikemičnom grupom (237,238). Razina hiperglikemije korelirala je sa smrtnošću tako da je smrtnost iznosila 10% kod pacijenta sa srednjom vrijednosti glukoze između 4.4-5.5 mmol/l te 43% kod pacijenata sa srednjom vrijednosti glukoze većom od 16.6 mmol/l.

Uz sve dosada izneseno javilo se pitanje da li bi intenzivna kontrola glikemije za vrijeme akutne bolesti imala utjecaj na morbiditet i mortalitet pacijenata. Provedeno je nekoliko istraživanja s različitim brojem ispitanika i strukturu studije, no sličnim zaključcima. Ovdje će biti prikazana samo dva istraživanja koja predstavljaju svojevrсnu prekretnicu po pitanju kontrole glikemije u intenzivnoj jedinici.

Lueven surgical trial studija pod vodstvom van den Berghe provedena 2001. godine pokazala je da je striktna (tight) kontrola glikemije s ciljnim vrijednostima glukoze u krvi 4.4-6.1 mmol/l povezana sa smanjenjem smrtnosti u intenzivnoj jedinici (239). Istraživanje je provedeno na 1548 bolesnika koji su boravili u jedinici intenzivnog liječenja nakon operativnog zahvata randomiziranih u dvije skupine s različitim pristupom liječenju. Tako je jedna skupina dobivala intenzivnu inzulinsku terapiju s ciljnim vrijednostima glukoze 4.4-6.1 mmol/l (IIT), dok je druga skupina bila liječena konvencionalnim pristupom s ciljnim vrijednostima glukoze 10-11.1 mmol/l i inzulinskom terapijom u slučaju razine glukoze u krvi iznad 11.9 mmol/l. Srednja vrijednost glukoze bila je niža u IIT skupini (5.7 mmol/l) u
usporedbi s konvencionalnom grupom (8.5 mmol/l). Smrtonos u jedinici intenzivnog liječenja bila je značajno niža u IIT grupi 4.6% spram konvencionalne grupe 8%, dok je ukupna bolnička smrtnost u IIT skupini iznosila 7.2% spram 10.9% u konvencionalnoj. Intenzivna inzulinska terapija smanjila je polimioneuropatiju, akutno zatajenje bubrega, potrebe transfuzije i infekcije u akutnoj bolesti. Hipoglikemija (razine glukoze u krvi < 2.2 mmol/l) bila je češća u IIT grupi s učestalosti od 5.1% spram 0.8% učestalosti u konvencionalnoj skupini.

Nove proširene spoznaje pokazala je NICE-SUGAR studija (240). NICE-SUGAR (Normoglycemia in Intensive Care Evaluation–Survival Using Glucose Algorithm Regulation) studija najveća je u nizu studija koja se bavila pitanjem striktnih kontrola glukoze intenzivnom inzulinskom terapijom. S ukupno 6104 internističkih i kirurških ispitanika randomiziranih u dvije skupine s različitim pristupom liječenju završena je 2009. godine. IIT grupa imala je ciljne vrijednosti glukoze 4.5–6.0 mmol/l, dok je ciljna vrijednost glukoze u konvencionalnoj grupi bila < 10.0 mmol/l. Iako je konvencionalna skupina bila definirana samo s maksimalnom vrijednost glukoze inzulinska infuzija bila je uspoređena i potom ukinuta kada bi razina glukoze pala ispod 8 mmol/l. Uspoređujući te dvije skupine IIT skupina imala je značajno niže vrijednosti glukoze 6.2 mmol/l spram 7.9 mmol/l, značajno veći mortalitet nakon 90 dana 27.5% spram 24.9% u konvencionalnoj grupi te značajno veću incidenciju hipoglikemije 6.8% spram 0.5% konvencionalne grupe gdje je hipoglikemija definirana razinom glukoza < 2.2 mmol/l. U podgrupi kirurških pacijenata koji su pripadali IIT skupini zamijećen je značajno viši mortalitet u usporedbi s konvencionalnom skupinom (24.4% spram 19.8%).

Prema podacima dobivenim istraživanjima osmišljen je protokol pristupa hiperglikemiji u akutnoj bolesti. Kontrola glikemije uvrštena je Surviving Sepsis Campaign (SSC) smjernice što dodatno govori u prilog važnosti hiperglikemije u akutnoj bolesti (241). Prema smjernicama SSC iz 2012. godine preporučen je protokolarni pristup tretiranju glikemije u intenzivnim jedinicama:

1. Započeti inzulinsku terapiju kod pacijenata s teškom sepsom u slučaju da dva uzastopna mjerenja glukoze budu veća od 10 mmol/l.

Težiti ciljnoj vrijednosti glukoze manjoj od 10.0 mmol/l, no ne manjoj od 6.1 mmol/l (1A)
2. Mjeriti vrijednosti glukoze svakih 1-2 sata dok se vrijednosti glukoze i infuzije inzulina ne stabiliziraju, potom mjeriti svaka 4 sata (1C)

3. S oprezom interpretirati vrijednosti glukoze dobivene iz kapilarne krvi (point of care testing) obzirom da je tom tehnikom moguće precijeniti stvarne vrijednosti glukoze u arterijskoj krvi ili plazmi (UG)

Slične preporuke SSC-a daju i druge smjernice. 2014. godine u Hrvatskoj osnovana je radna skupina za donošenje Smjernica za zbrinjavanje hiperglikemije u hospitaliziranih bolesnika (242). Skupina je kao polazište uzela smjernice za zbrinjavanje hiperglikemije nekoliko vodećih međunarodnih stručnih društava i prilagodila ih da budu praktički provedivi u hrvatskim uvjetima. Preporuke smjernica glase kako slijedi:

1. Određivanje glikemije u intenzivnim jedinicama

Preporuke:
1.1. Mjerenje glukoze u venskoj ili arterijskoj krvi s pomoću uređaja za određivanje plinova u krvi ili u laboratoriju (1B)
1.2. Bolesnicima sa šećernom bolešću ili hiperglikemijom mjeriti GUK barem 6 puta na dan ili češće ovisno o varijabilnosti nalaza (1C)
1.3. U bolesnika sklonih hipoglikemiji povećati učestalost određivanja glikemije radi identifikacije teške hipoglikemije (GUK < 2,2 mmol/L), čak i u odsutnosti kliničkih znakova (1C)

Prijedlog:
1.4. Bolesnicima sa stabilnim vrijednostima glikemije smanjiti učestalost mjerenja GUK-a (2D)
2. Ciljevi kontrole glikemije u bolesnika u intenzivnim jedinicama

Preporuka:
2.1. Ciljna glikemija niža je od 10.0 mmol/L za sve bolesnike u intenzivnim jedinicama (1B)

Prijedlog:
2.2. Kao donju granicu u kontroli glikemije izabrati vrijednost iz normalnog raspona za glikemiju, prema mogućnostima i organizaciji intenzivne jedinice (2B)

3. Zbrinjavanje hiperгlikemije u intenzivnim jedinicama

Preporuke:
3.1. Regulirati glikemije kontinuiranom infuzijom inzulina (1B)
3.2. Uspostaviti pisani protokol za doziranje inzulina u kontinuiranoj infuziji za bolesnike u intenzivnim jedinicama na razini intenzivne jedinice ili bolnice (1C)
3.3. Prije prekida kontinuirane infuzije inzulina uvodenje bazal-bolusnoga supkutanog inzulina za bolesnike s odranije poznatom šećernom bolešću (1B)
3.4. Bolesnicima bez anamneze šećerne bolesti nakon prekida infuzije inzulina nastaviti bazal-bolusnu terapiju ako je doza inzulina u infuziji bila viša od 2 jedinice na sat (1A)

Prijedlog:
3.5. Razmotriti primjenu supkutanog inzulina prema bazal-bolusnoj shemi (kao za bolesnike na odjelima) za stabilne bolesnike (2C)

4. Praćenje bolesnika s hiperglikemijom akutne bolesti

Preporuke:
4.1. Pratiti bolesnike koji su imali hiperglikemiju tijekom hospitalizacije, a nemaju anamnezu šećerne bolesti i imaju normalan HbA1c, tj. nemaju novootkrivenu šećernu bolest, jer takvi bolesnici imaju povišen rizik od razvoja šećerne bolesti tipa 2 (1B)

Prijedlozi:
4.2. Svim takvim bolesnicima sugerirati promjene životnog stila kako bi se smanjio rizik od razvoja šećerne bolesti (2C)
4.3. Planirati godišnje kontrole glikemijskog statusa u takvim bolesnika kako bi se pravodobno ustanovila pojava šećerne bolesti (2C)

Iako ciljna vrijednost glukoze u akutnoj bolesti i dalje ostaje kontroverzna, znanstvena zajednica se slaže da je kontrola hiperglikemije u akutnoj bolesti potrebna.
2. HIPOTEZA

Pojava hiperglikemije u teškoj akutnoj bolesti povezana je s intrinzično povišenom inzulinskom rezistencijom kod pacijenata koji nemaju manifestan poremećaj metabolizma glukoze.
3. CILJEVI ISTRAŽIVANJA

3.1. Glavni cilj istraživanja

Glavni cilj ovog istraživanja je ispitati i dokazati povezanost pojave hiperglikemije u teškoj akutnoj bolesti s intrinzično povišenom inzulinskom rezistencijom kod pacijenata koji nemaju manifestan poremećaj metabolizma glukoze.

3.2. Specifični ciljevi istraživanja

- ispitati postoji li povezanost karakteristika pacijenata (dob, spol, BMI, WHR, koncentracija glukoze, triglicerida, kolesterola, pušenje) s pojavom hiperglikemije u akutnoj bolesti

- ispitati postoji li povezanost nasljeđa (poremećaj metabolizma glukoze u obitelji) s pojavom hiperglikemije u akutnoj bolesti

- ispitati postoji li povezanost težine akutne bolesti (mjereno APACHE II i SOFA bodovnim sustavima) s pojavom hiperglikemije u akutnoj bolesti

- utvrditi postoji li razlika dobivenih rezultata inzulinske rezistencije ovisno o metodi mjerenja inzulinske rezistencije
4. ISPITANICI I METODE

Prospektivno kohortno istraživanje provedeno je u Zavodu za intenzivnu medicinu Klinike za unutrašnje bolesti KBC-a Zagreb. U istraživanje su uključeni bolesnici stariji od osamnaest godina, hospitalizirani radi teške akutne bolesti. Teška akutna bolest (TAB) u ovom istraživanju obuhvaća spektar bolesti: akutni koronarni sindrom, sepsa (s teškom sepsom i septičkim šokom) te ostale bolesti (pneumonija, plućni edem). Navedene dijagnoze najčešće su prijamne dijagnoze u navedenoj intenzivnoj jedinici.

U istraživanje su uključeni svi pacijenti koji su hospitalizirani u Zavodu za intenzivnu medicinu radi teške akutne bolesti (TAB), koji prije hospitalizacije dokazano nemaju manifestan poremećaj metabolizma glukoze: šećernu bolest (DM), poremećenu vrijednost glikemije natašte (IFG) ili poremećeno podnošenje glukoze (IGT) te su pristali sudjelovati u istraživanju. Podaci o poremećaju metabolizma glukoze dobiveni su anamnestički ili heteroanamnestički. Za vrijeme hospitalizacije izmjerena vrijednost HbA1c manja od 6.5% te standardni oralni test opterećenja glukozom (OGTT test) učinjen prema smjernicama WHO na kontroli 6-8 tjedana nakon hospitalizacije urednih vrijednosti (vrijednost glukoze u plazmi natašte manja od 5.6 mmol/l te 2-h nakon OGTT testa vrijedost glukoze u plazmi manja od 7.8 mmol/l) smatra se dokazom da pacijent prije hospitalizacije nije imao manifestan poremećaj metabolizma glukoze (DM, IFG, IGT). Šećerna bolest (DM), poremećena vrijednost glikemije natašte (IFG) i poremećena tolerancija glukoze (IGT) definirani su prema ADA kriterijima (1,2).

Pacijenti kojima je za vrijeme boravka u Zavodu ili u razdoblju do prve kontrole (6-8 tjedana nakon otpusta) uključujući prvu kontrolu dijagnosticiran neki od oblika poremećaja metabolizma glukoze (DM, IFG, IGT) isključeni su iz istraživanja.

Iz istraživanja su isključeni pacijenti koji su primili kortikosteroidnu terapiju unutar četiri tjedna prije prijema u Zavod ili su za vrijeme boravka bili na kortikosteroidnoj terapiji, kao i pacijenti oboljeli od endokrinološke bolesti koja bi mogla utjecati na metabolizam glukoze. Skupinu endokrinoloških bolesti koje su bile isključni kriterij za ovo istraživanje čine: endokrinopatije (akromegalija, Cushingov sindrom, glukagonom, feokromocitom, hipertiroidizam, somatostatinom, aldosteronom) te bolesti egzokrinog pankreasa.
(pankreatitis, trauma/pankreatektomija, tumor, cistična fibroza, hemokromatoza, fibrokalkulozna pankreatopatija).

Pacijenti s diseminiranom malignom bolešću te oni čije je akutno ili kronično stanje moglo dovesti do skore smrti ili ometati daljnje praćenje izuzeti su od daljnjeg praćenja. Pacijenti koji su odbili sudjelovanje u istraživanju nisu uključeni u istraživanje.

Svi sudionici istraživanja bili su informirani o istraživanju, cilju i načinu prikupljanja podataka, potpisali su suglasnost za sudjelovanje i imali su mogućnost odustajanja u svakom trenutku istraživanja.

Svakom pacijentu prilikom prijema u Zavod evidentirani su sljedeći podaci: ime, prezime, dob, spol, vrsta teške akutne bolesti zbog koje je pacijent hospitaliziran, visina, težina, izmjeren je opseg struka i bokova te izračunati indeks tjelesne mase (BMI) i odnos struka i bokova (WHR).

Procjena rizika mortaliteta i morbiditeta akutno teško bolesnog pacijenta izvršena je prema standardnim protokolima koji se primjenjuju u jedinicama intenzivnog liječenja - APACHE II (Acute Physiology And Chronic Health Evaluation II) i SOFA (Sequential Organ Failure Assessment).

Prikupljeni su anamnestički podaci o pušenju, konzumaciji alkohola i prisutnosti poremećaja metabolizma glukoze (DM,IFG,IGT) u obitelji.

Izmjerena je vrijednost HbA1c te je ovisno o nalazu pacijent uključen ili isključen iz istraživanja. HbA1c je određivan validiranom standardnom laboratorijskom metodom - imunoturbidimetrijom.

Za vrijeme boravka u Zavodu izmjerene su vrijednosti kolesterol, triglicerida, hemoglobina, hematokrita, eritrocita, leukocita, trombocita, bilirubina, kreatinina, natrija, kalija, PaO2, arterijski PH te višekratno koncentracija glukoze u plazmi (arterijska ili venska krv).

Svim bolesnicima uključenima u istraživanje glukoze u krvi je određivana najmanje dva puta dnevno (06 i 18 sati). Dodatna mjerenja koncentracije glukoze provedena su kod bolesnika s promjenjivim vrijednostima glukoze u krvi te u bolesnika koji su dobivali inzulin. Venska krv je analizirana standardnom laboratorijskom metodom određivanja glukoze u krvi ili analizatorom plinova u krvi smještenim u Zavodu za intenzivnu medicinu (IL GEM Premier 3000 Electrolyte Analyzer, Instrumentation Laboratories, Lexington, MA, USA).

Svi bolesnici liječeni su prema standardnim protokolima liječenja u jedinicama intenzivnog liječenja.

Prema vrijednostima koncentracije glukoze bolesnici su podijeljeni u dvije skupine; skupinu s normoglikemiom i skupinu s hiperglikemiom.

Koncentracija glukoze od 7.7 mmol/l predstavljala je granicu normoglikemije i hiperglikemije.

Konsenzus oko vrijednosti glikemije koja bi se smatrala granicom između normoglikemije i hiperglikemije u akutnoj bolesti još uvijek nije donesen te je navedena vrijednost određena granicom po uzoru na prethodno provedena istraživanja koja su se bavila hiperglikemijom u akutnoj bolesti (215).

Hiperglikemičnu skupinu čine pacijenti kojima je za vrijeme boravka u Zavodu u minimalno dva mjerenja koncentracija glukoze u plazmi (arterijska ili venska krv) bila veća od 7.7 mmol/l, dok normoglikemičnu skupinu čine svi ostali pacijenti.

Pacijenti su bili naručeni na kontrolu u Ambulantu Zavoda za intenzivnu medicinu 6-8 tjedan nakon otpusta iz Zavoda. U slučaju kada pacijent nije došao na kontrolu u dogovorenom terminu isključen je iz istraživanja.

Na dogovorenoj kontroli u Ambulanti Zavoda za intenzivnu medicinu svaki pacijent bio je podvrgnut OGTT testu. Prije učinjenog OGTT testa uzeti su uzorci krvi natašte. Standardni oralni test opterećenja glukozom, izveden je prema preporukama Svjetske zdravstvene organizacije (određivanje koncentracije glukoze natašte (nakon prekonočnog gladovanja) i 2 sata nakon konzumacije 75 g anhidrirane glukoze rastopljene u 250-300 ml vode) (246). Serumskia koncentracija glukoze analizirana je enzimskom metodom: fotometrija UV s heksokinazom na Cobas c501/c311, Roche uređaju. Pacijentima kojima je ustanovljen poremećaj metabolizma glukoze savjetovan je pregled dijabetologa.
Pacijentima s urednim vrijednostima glukoze nakon učinjenog OGTT testa iz prethodno natašte uzetog uzorka krvi laboratorijski je analizirana vrijednosti koncentracije inzulina. Uzorak krvi uzet natašte centrifugiran je te je serum skladišten na -20 Celzijevih stupnjeva. Serumskaja koncentracija inzulina analizirana je elektrokemilumnescencijskom metodom na Cobas E 601, Roche uređaju.

Inzulinska rezistencija određena je iz dobivenih vrijednosti iz natašte uzetih uzoraka krvi jednostavnim indeksima kako slijedi: QUICKI, HOMA-IR, log HOMA-IR, HOMA 2-IR, HOMA 2-%S te je putem istog HOMA2 kompjuterskog modela procijenjena funkcija beta stanica (HOMA 2%-B) u istraživanom uzorku. QUICKI = 1/ (log (inzulin natašte mU/ml) + log (glukoza natašte mg/dl)) HOMA-IR = glukoza natašte (mmol/l)*inzulin natašte (mU/ml)/22.5

Prema autorima posljednje provedene meta analize (191), preporučeni jednostavni indeks određivanja inzulinske rezistencije je revised QUICKI kada se mjerenje bazira na uzorcima uzetim natašte. Revised QUICKI zahtjeva analizu razine glukoze, inzulina i neesterificiranih masnih kiselina (NEFA) iz natašte uzetog uzorka krvi. Analiza NEFA se ne provodi u svakodnevnoj kliničkoj dijagnostici radi visoke cijene i potrebe posebno dizajnirane opreme za analizu. Obzirom na kompliciranost, nedostupnost i cijenovnu zahtjevnost izvedbe revised QUICKI u ovom istraživanju su korišteni drugi jednostavni indeksi za procjenu inzulinske rezistencije također preporučeni od strane autora meta analize. Prema provedenoj meta analizi jačina korelacije različitih surogat metoda mjerenja inzulinske rezistencije prema HEC je u najboljem slučaju umjerena čime cijena same provedbe mjerenja igra vrlo bitnu ulogu u odabiru jednostavnog indeksa za procjenu inzulinske rezistencije. Analiza je pokazala jačinu korelacije s 95% CI surogat metoda mjerenja inzulinske rezistencije koji se baziraju na uzroku natašte spram HEC kako slijedi: revised QUICKI r=0.68 (0.58, 0.77), QUICKI r=0.61 (0.55, 0.65), HOMA-IR r= -0.53 (-0.61, -0.43), log HOMA-IR r=-0.60 (-0.66, -0.53), HOMA%-S r=0.57 (0.46, 0.67) i inzulin natašte r= -0.57 (-0.65, -0.48) te autori u slučaju nemogućnosti provedbe revised QUICKI, sugeriraju odabir QUICKI, log HOMA-IR ili HOMA-%S indeksa u procjeni inzulinske rezistencije iz natašte uzetog uzorka krvi.
4.1. DEFINICIJE

Poremećaji metabolizma glukoze definirani su prema ADA kriterijima. Dijagnostički kriteriji za šećernu bolest su vrijednost HbA1c ≥ 6.5% ili vrijednost glukoze u plazmi natašte ≥7.0 mmol/l (termin natašte predstavlja nekalorijski unos minimalno zadnjih 8 sati) ili vrijednost glukoze u plazmi ≥ 11.1 mmol/l 2 sata nakon opterećenja OGTT testom ili vrijednost glukoze u plazmi ≥ 11.1 mmol/l u slučajnom uzorku kod bolesnika s klasičnim znakovima hiperglikemije ili hiperglikemijanske krize.

Poremećena vrijednost glikemije natašte (IFG) definirana je vrijednostima glukoze natašte koje se kreću unutar raspona 5.6 mmol/l-6.9 mmol/l, poremećeno podnošenje glukoze (IGT) definiraju vrijednosti glukoze u iznosu 7.8 mmol/l-11.0 mmol/l izmjerene u plazmi 2 sata nakon opterećenja OGTT testom. Preddijabetes je kategorija koja osim IFG i IGT obuhvaća grupu bolesnika kod kojih vrijednost HbA1c iznosi 5.7-6.4% (1, 2).

Indeks tjelesne mase (BMI) služi za okvirnu procjenu tjelesnog sadržaja masti. Računa se kao omjer tjelesne mase (izražene u kilogramima) i kvadrata tjelesne visine (izražene u metrima). National Institute of Health (NIH) i World Health Organization (WHO) klasificiraju osobe prema BMI u nekoliko kategorija:

- Pothranjenost: BMI < 18.5 kg/m²
- Normalna tjelesna masa: 18.5 ≤ BMI ≤ 24.9 kg/m²
- Prekomjerna tjelesna masa: 25.0 ≤ BMI ≤ 29.9 kg/m²
- Pretilost: BMI ≥ 30 kg/m²
- Pretilost I stupnja: 30.0 ≤ BMI ≤ 34.9 kg/m²
- Pretilost II stupnja: 35.0 ≤ BMI ≤ 39.9 kg/m²
- Pretilost III stupnja: BMI ≥40 kg/m², koji predstavlja ekstremnu tj. morbidnu pretilost.

Sindrom sistemske upalne odgovora (SIRS), sepsa, teška sepsa i teška sepsa šok definirani su prema kriterijima konsenzus konferencije ACCP/SCCM iz 1992. godine i njenih izmjena i dopuna od strane SCCM/ESICM/ACCP/ATS/SIS 2001. godine (247, 248). SIRS je definiran kao prisustvo barem jednog od navedenog: 38°C < tjelesna temperatura < 36°C; srčana frekvencija > 90/min; hiperventilacija (frekvencija disanja > 20/min ili PaCO₂ < 32 mmHg), 12,000 stanica/μl < broj leukocita < 4,000 stanica/μl ili normalan broj leukocita s 10 % ili više nezrelih stanica.
Sepsa je klinički sindrom definiran prisutstvom infekcije i dva ili više kriterija SIRS-a, teška sepsa je sepsa s prisutnom disfunkcijom organa, hipoperfuzijom ili hipotenzijom, a septički šok je karakteriziran hipotenzijom uzrokovanim sepsom koja perzistira usprkos adekvatne resuscitacije tekućinom uz znakove hipoperfuzije ili disfunkcije organa.

Akutni koronarni sindrom, definiran prema ACC/AHA kriterijima, odnosi se na skup kliničkih sindroma uzrokovanih naglim nastankom poremećaja krvotoka u koronarnim arterijama s posljedičnom ishemijom odgovarajućeg dijela miokarda. Obuhvaća nestabilnu anginu pektoris, infarkt miokarda bez ST elevacije (NSTEMI) i infarkt miokarda sa ST elevacijom (STEMI). Nestabilna angina/NSTEMI definirani su elektrokardiografskim promjenama (spuštena ST spojnica ili/ili inverzija T vala) i/ili pozitivnim biomarkerima nekroze miokarda (troponin I, troponin T, CK-MB) uz odgovarajuću kliničku sliku (bol u prsima ili ekvivalent angine). STEMI je definiran kao prisutnost barem dvaju od tri karakteristična pokazatelja: osjećaj nelagode u prsima, pozitivnim biomarkerima nekroze miokarda, tipičnim promjenama na EKG-u (visoki T val u zoni ishemije, elevacija ST spojnice > 1mm u 2 ili više odvoda, patološki Q zubac, novonastali blok lijeve grane) (249-251).

APACHE II (Acute Physiology And Chronic Health Evaluation II) je bodovni sustav opisan još 1981. godine koji se koristi za predviđanje mortaliteta akutno teško bolesnih pacijenata. Boduje se dvanaest fizioloških varijabli (temperatura, srednji arterijski tlak, srčana
frekvencija, frekvencija disanja, parametri disanja umjetne ventilacije, serumska koncentracija bikarbonata ili arterijski pH, koncentracija natrija, kalija, kreatinina, hematokrit, broj leukocita, procjena stanja svijesti prema Glasgowskoj ljestvici kome), dob i prethodni zdravstveni status (kronične bolesti i imunodeficijencije). Raspon bodova je od 0 do 71, a viši broj bodova označava težu bolest i viši predviđeni mortalitet (253,254).

SOFA (Sequential Organ Failure Assesment) je bodovni sustav, koji za razliku od ranije navedenog sustava koji predviđa mortalitet, opisuje slijed komplikacija u akutno teško bolesnih pacijenata tj. procjenjuje morbiditet. Koristi se za svakodnevnu evaluaciju šest organskih sustava; dišni sustav (Pa02/Fi02), kardiovaskularni sustav (stupanj hipotenzije tj. potreba za vazopresorima), bubrežni sustav (kreatinin ili diureza), središnji živcani sustav (procjena stanja svijesti prema Glasgowskoj ljestvici kome), koagulaciju (broj trombocita) i funkciju jetre (bilirubin). Koristi se skala od 0 (normalna funkcija organa) do 4 (najviše poremećena funkcija organa) za svaki organski sustav. Prednost ovog bodovnog sustava jest njegova jednostavnost što omogućuje redovito i ponavljano računanje kako bi se što bolje opisao i razumio razvoj bolesti u bolesnika te omogućila usporedba bolesnika u kliničkim istraživanjima (255, 256).

4.2. STATISTIČKE METODE

U statističkoj obradi podataka korišteni su statistički programi SPSS 17.0 i MedCalc 7.2.1.0. Kontinuirane varijable prikazane su aritmetičkom sredinom i standardnom devijacijom. Kategoričke varijable prikazane su apsolutnom i relativnom frekvencijom.
U univarijatnoj analizi korišten je Studentov T-test za kontinuirane varijable, dok je za kategoričke varijable korišten Hi-kvadrat test. Multivarijatna analiza učinjena je logističkom regresijom.
5. REZULTATI

Tablica 1. Osobine bolesnika uključenih u istraživanje

<table>
<thead>
<tr>
<th></th>
<th>Svi bolesnici (N=221)</th>
<th>Bolesnici s hiperglikemijom (N=114)</th>
<th>Bolesnici bez hiperglikemije (N=107)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dob (g)</td>
<td>51±14</td>
<td>51±15</td>
<td>50±13</td>
<td>0.605</td>
</tr>
<tr>
<td>Ženski spol (N,%)</td>
<td>87 (39%)</td>
<td>41 (36%)</td>
<td>46 (43%)</td>
<td>0.784</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>27±4</td>
<td>28.4±4.6</td>
<td>26.4±3.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Omjer struka i bokova</td>
<td>1.05±0.13</td>
<td>1.07±0.11</td>
<td>0.99±0.11</td>
<td><0.001</td>
</tr>
<tr>
<td>Uk. kolesterol (mmol/L)</td>
<td>4.6±0.97</td>
<td>4.7±1.0</td>
<td>4.5±0.9</td>
<td>0.300</td>
</tr>
<tr>
<td>Trigliceridi (µmol/L)</td>
<td>3.2±1.1</td>
<td>3.1±1.1</td>
<td>3.2±1.0</td>
<td>0.165</td>
</tr>
<tr>
<td>Najviši GUP u akutnoj bolesti (mmol/L)</td>
<td>8.1±3.7</td>
<td>9.3±4.1</td>
<td>6.9±3.2</td>
<td>0.005</td>
</tr>
<tr>
<td>APACHE II skor</td>
<td>18.4±3.9</td>
<td>19.5±4.9</td>
<td>17.3±3.7</td>
<td>0.001</td>
</tr>
<tr>
<td>SOFA skor</td>
<td>3.1±0.6</td>
<td>3.2±0.6</td>
<td>2.8±0.5</td>
<td>0.003</td>
</tr>
<tr>
<td>Obiteljska anamneza za DM (%)</td>
<td>54 (24.4%)</td>
<td>34 (32.7%)</td>
<td>20 (18.7%)</td>
<td>0.029</td>
</tr>
<tr>
<td>Pušenje</td>
<td>50 (22.6%)</td>
<td>28 (26.9%)</td>
<td>32 (27.3%)</td>
<td>0.936</td>
</tr>
</tbody>
</table>

DM – šećerna bolest; BMI – indeks tjelesne mase; GUP – glukoza u serumu

Istraživanje je završeno na ukupno 221 pacijentu koji su svrstani u dvije skupine ovisno o glikemijskom statusu za vrijeme hospitalizacije.

Pacijenti kojima je za vrijeme boravka u Zavodu u minimalno dva mjerenja koncentracija glukoze u plazmi bila veća od 7.7 mmol/l tvorili su hiperglikemičnu skupinu, dok su normoglikemičnu skupinu sačinjavali svi ostali pacijenti.

Po završetku istraživanja hiperglikemičnu skupinu činilo je 114 pacijenata, dok se u normoglikemičnoj skupini nalazilo 107 pacijenata.
Slika 1. Dob ispitanika prema skupinama

Prosječna dob ispitanika u istraživanju bila je 51 godina starosti što ujedno odgovara i prosječnoj dobi hiperglikemične skupine, dok je prosječna dob normoglikemične skupine bila 50 godina.

U istraživanju je ukupno sudjelovalo 87 žena čineći tako ukupno 39% ispitanika. U normoglikemičnoj skupini 43% ispitanika bile su žene, njih 46, dok je u hiperglikemičnoj skupini 41 žena činila ukupno 36% ispitanika.

Analizom podataka među skupinama nije zamjećena statistički značajna razlika u dobi (p=0.605), niti spolu pacijenata (p=0.784).
Slika 2. Vrijednost indeksa tjelesne težine prema skupinama

Prosječna vrijednost indeksa tjelesne mase ispitanika iznosila je 27 kg/m².

U hiperglikemičnoj skupini vrijednosti indeksa tjelesne mase u prosječnom iznosu od 28.4 kg/m² bila je viša od vrijednosti normoglikemične skupine koja je iznosila 26.4 kg/m².

Razlika u vrijednosti indeksa tjelesne mase među ispitivanim skupinama analizom se pokazala statistički značajnom (p=0.002).
Slika 3. Vrijednost omjera struka i bokova prema skupinama

Prosječna vrijednost omjera struka i bokova svih ispitanika iznosila je 1.05.
U hiperglikemičnoj skupini radilo se o vrijednosti u iznosu od 1.07, dok je u normoglikemičnoj skupini prosječna vrijednost omjera struka i bokva iznosila 0.99.
Vrijednost omjera struka i bokova bila je statistički značajno viših vrijednosti u hiperglikemičnoj skupini (p<0.001).

Prosječna vrijednost ukupnog kolesterola ispitanika iznosila je 4.6 mmol/l, dok je prosječna vrijednost triglicerida ispitivanih pacijenata iznosila 3.2 µmol/l.
U skupini bolesnika koji su razvili hiperglikemiju u akutnoj bolesti zabilježene su više vrijednosti ukupnog kolesterola i triglicerida.
Prosječna vrijednost kolesterola hiperglikemične skupine iznosila je 4.7 mmol/l, dok se u normoglikemičnoj skupini radilo o vrijednosti od 4.5 mmol/l.
Prosječna vrijednost triglicerida hiperglikemične skupine iznosila je 3.1 µmol/l., dok se u normoglikemičnoj skupini radilo o vrijednosti od 3.2 µmol/l.
Iako su razlike u vrijednostima kolesterola i triglicerida među skupinama bile zamjetne, nisu se pokazale statistički značajne.
Istraživanje je potvrdilo povezanost težine bolesti i pojave hiperglikemije u akutnoj bolest. Prosječna vrijednost APACHE II skora svih ispitanika iznosila je 18.4, a vrijednost SOFA skora 3.1.

U hiperglikemičnoj skupini prosječni APACHE II skor iznosio je 19.5, dok je u normoglikemičnoj skupini iznosio 17.3.

Prosječna vrijednosti SOFA skora hiperglikemične skupine iznosila je 3.2, a normoglikemične 2.8.

Vrijednosti APACHE II i SOFA skora bili su statički značajno viših vrijednosti u hiperglikemičnoj skupini (APACHE II p=0.001, SOFA p=0.003), no multivarijatnom analizom logističkom regresijom se nisu pokazali neovisnim prediktorima razvoja hiperglikemije.

Prosječna najviša izmjerena vrijednost glukoze u akutnoj bolesti među svim ispitanicima iznosila je 8.1 mmol/l.

U hiperglikemičnoj skupini ta vrijednost iznosila je 9.3 mmol/l, dok je u normoglikemičnoj skupini iznosila 6.9 mmol/l.

Razlika prosječne najviše izmjerene vrijednosti glukoze u akutnoj bolesti među skupina bila je zamjetna te se vrijednost pokazala statistički značajno višom u hiperglikemičnoj skupini (p=0.005).

Pozitivna obiteljska anamneza šećerne bolesti zamjećena je među 54 ispitanika odnosno među 24.4% svih sudionika istraživanja.

U hiperglikemičnoj skupini postotak pacijenata s pozitivnom obiteljskom anamnezom šećerne bolesti iznosio je 32.7%, obuhvaćajući 34 ispitanika, dok je postotak bio nižih vrijednosti u normoglikemičnoj skupini gdje je iznosio 27.4% sa 20 ispitanika.

Takva razlika među skupinama pokazala se statistički značajnom s većim postotkom pozitivne obiteljske anamneze šećerne bolesti u hiperglikemičnoj skupini (p=0.029).
Pozitivan anamnestički podatak o pušenju bio je prisutan među 22.6% ispitanika, odnosno 50 pacijenata. Veći broj pušača nalazio se u normoglikemičnoj skupini brojeći 32 pacijenta, dok je 28 pacijenata iz hiperglikemične grupe navelo da puši. Takav odnos pušača nije pokazao statistički značajne razlike među skupinama.

Tablica 2. Inzulinska rezistencija uključenih bolesnika

<table>
<thead>
<tr>
<th></th>
<th>Bolesnici s hiperglikemijom (N=114)</th>
<th>Bolesnici bez hiperglikemije (N=107)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUP (mmol/L)</td>
<td>4.7 ± 0.5</td>
<td>4.6 ± 0.56</td>
<td>0.414</td>
</tr>
<tr>
<td>Inzulin (pmol/L)</td>
<td>75.5 ± 16.1</td>
<td>62.8 ± 11.0</td>
<td><0.001</td>
</tr>
<tr>
<td>QUICKI</td>
<td>0.339 ± 0.009</td>
<td>0.349 ± 0.006</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>2.245 ± 0.417</td>
<td>1.839 ± 0.224</td>
<td><0.001</td>
</tr>
<tr>
<td>Log HOMA-IR</td>
<td>-0.244 ± 0.079</td>
<td>-0.268 ± 0.053</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA 2-IR</td>
<td>1.37 ± 0.27</td>
<td>1.14 ± 0.17</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA 2-%B</td>
<td>141.9 ± 47.9</td>
<td>130.7 ± 43.5</td>
<td><0.07</td>
</tr>
<tr>
<td>HOMA 2-%S</td>
<td>75.7 ± 15.2</td>
<td>89.5 ± 13.4</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* usporedba skupine bolesnika s hiperglikemijom i bolesnika bez hiperglikemije u akutnoj bolesti

Podaci navedeni u tablici broj 2 dobiveni su analizom uzoraka prikupljenih na kontroli u Ambulantu Zavoda za intenzivnu medicinu 6-8 tjedana nakon hospitalizacije.

Analizom prikupljenih podataka pokazana je statistički značajna razlika vrijednosti inzulinske rezistencije među ispitivanim skupinama, dok kod funkcije beta stanica iako vidljiva razlika u vrijednostima među skupinama nije se pokazala statistički značajna.

Skupina bolesnika koja je razvila hiperglikemiju za vrijeme akutne bolesti ima statistički značajno višu vrijednost inzulinske rezistencije prema svim jednostavnim indeksima mjerenja inzulinske rezistencije u usporedbi sa skupinom koja je ostala normoglikemična za vrijeme akutne bolesti.
Izmjerene vrijednosti glukoze natašte razlikuju se među ispitivanim skupinama. Prosječna vrijednost glukoze više je vrijednosti u hiperglikemičnoj skupini spram prosječne vrijednosti normoglikemične skupine (4.7 mmol/l spram 4.6 mmol/l), no razlika u vrijednosti među skupinama nije se pokazala statistički značajnom (p=0.414).

Slika 4. Vrijednost inzulina prema skupinama

Prosječna vrijednost inzulina izmjerena u hiperglikemičnoj skupini iznosila je 75.5 pmol/l. U usporedbi s prosječnom vrijednosti inzulina normoglikemijske skupine koja je iznosila 62.8 pmol/l vrijednost hiperglikemične skupine bila je zamjetno viša.

Statistička analiza pokazala je da je zamjetna razlika među skupinama i statistički značajna (p<0.001).
Slika 5. QUICKI prema skupinama

Prosječna vrijednost inzulinske rezistencije izmjerena jednostavnim indeksom QUICKI hiperglikemične skupine iznosila je 0.339, dok je u normoglikemičnoj skupini iznosila 0.349.

Razlika među skupina bila je statistički značajna (p<0.001) te ukazuje na povećanu inzulinsku rezistenciju hiperglikemične skupine.
Slika 6. HOMA-IR prema skupinama

Prosječna vrijednost HOMA-IR hiperglikemične skupine iznosila je 2.245, dok je prosječna vrijednost HOMA-IR normoglikemične skupine bila niža i iznosila 1.839.
Zamjetna razlika bila je i statistički značajna (p<0.001) te govori u prilog višoj razini inzulinske rezistencije skupine koja je za vrijeme akutne bolesti razvila hiperglikemiju.

Viša razina inzulinske rezistencije u skupini koja je razvila hiperglikemiju u akutnoj bolesti zamjećena je i prilikom određivanja inzulinske rezistencije putem jednostavnog indeksa log HOMA-IR.
Razlika u prosječnoj vrijednosti između hiperglikemične (-0.244) i normoglikemične skupine (-0.268) bila je zamjetna i statistički značajna (p<0.001).
Slika 7. HOMA2-IR prema skupinama

Prosječna vrijednost HOMA2-IR hiperglikemične skupine iznosi 1.37, dok u normoglikemičnoj skupini ona iznosi 1.14.

Inzulinska rezistencija izračunata putem kompjuterskog programa HOMA 2.2 statistički je značajno viših vrijednosti u hiperglikemičnoj skupini (p<0.001).
Prosječna vrijednost funkcije beta stanica u hiperglikemičnoj skupini iznosila je 141.9, dok je u normoglikemičnoj skupini iznosila 130.7.

Iako zamjetna razlika u vrijednostima funkcije beta stanica među skupinama nije se pokazala statistički značajnom (p<0.07).

Slika 8. HOMA2-%B prema skupinama
Slika 9. HOMA2-%S prema skupinama

Prosječna vrijednost inzulinske osjetljivosti hiperglikemične skupine iznosila je 75.7, a normoglikemične skupine 89.5.

Razlika među skupinama bila je statistički značajna (p<0.001) i ukazivala je na smanjenu inzulinsku osjetljivost hiperglikemične skupine.
Tablica 3. Varijable neovisno povezane s pojavom hiperglikemije u akutnoj bolesti u multivarijatnoj analizi logističkom regresijom

<table>
<thead>
<tr>
<th>Varijabla</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI, za svaki porast od 1.0 kg/m²</td>
<td>1.23 (1.11 – 1.36)</td>
<td>0.001</td>
</tr>
<tr>
<td>WHR, za svaki porast od 0.1</td>
<td>2.56 (1.79 – 3.64)</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA-IR, za svaki porast od 0.1</td>
<td>6.58 (1.59 – 27.34)</td>
<td>0.036</td>
</tr>
<tr>
<td>QUICKI, za svaku promjenu od 0.01</td>
<td>25.1 (1.25 – 49.8)</td>
<td>0.041</td>
</tr>
</tbody>
</table>

BMI – indeks tjelesne mase; WHR – omjer struka i bokova;

Vrijednosti indeksa tjelesne mase kao i vrijednost omjera struka i bokova bili su statistički značajno viših vrijednosti u hiperglikemičnoj skupini.

Multivarijatna analiza logističkom regresijom pokazala je da su obje osobine neovisno povezane s pojavom hiperglikemije u akutnoj bolesti.

Za svaki porast indeksa tjelesne mase od 1.0 kg/ m² rizik pojave hiperglikemije u akutnoj bolesti iznosi 1.23 (95% CI 1.11-1.36), p=0.001, dok porastom vrijednosti omjera struka i bokova za 0.1 rizik pojave hiperglikemije u akutnoj bolesti iznosi 2.56 (95% CI 1.79-3.64), p<0.001.

Vrijednosti HOMA-IR kao i vrijednosti QUICKI bili su statistički značajno različite među ispitivanim skupinama.

Multivarijatna analiza logističkom regresijom također je pokazala da su HOMA-IR i QUICKI neovisno povezani s pojavom hiperglikemije u akutnoj bolesti.

Za svaki porast od 0.1 HOMA-IR vrijednosti rizik pojave hiperglikemije u akutnoj bolesti je 6.58; 95% CI (1.59-27.34), p=0.036, dok promjenom vrijednosti QUICKI od 0.01 rizik pojave hiperglikemije u akutnoj bolesti iznosi 25.1; 95% CI (1.25-49.8), p=0.041.
6. RASPRAVA

Rezultati ovog istraživanja pokazali su da je pojava hiperglikemije u teškoj akutnoj bolesti povezana s intrinzično povišenom inzulinskom rezistencijom kod pacijenata koji nemaju manifestan poremećaj metabolizma glukoze.

Istraživanje je provedeno u Zavodu za intenzivnu medicinu Klinike za unutrašnje bolesti KBC-a Zagreb i završeno na ukupno 221 pacijentu koji su prema glikemijskom statusu za vrijeme hospitalizacije razvrstani u dvije skupine. Analizom podataka među skupinama nije zamjećena statistički značajna razlika u dobi niti spolu pacijenata. Širokim isključnim kriterijima obuhvaćen je niz potencijalnih uzroka nastanka hiperglikemije za vrijeme hospitalizacije. Postupkom eliminacije drugih kofaktora koji mogu dovesti do hiperglikemije teorijski je omogućeno da do nastanka hiperglikemije u akutnoj bolesti dođe samo kod pojedinaca koji osim izloženosti stresu imaju intrinzičnu predispoziciju za razvoj hiperglikemije u akutnoj bolesti što ujedno predstavlja i jakost samog istraživanja.

Skupina bolesnika koja je razvila hiperglikemiju za vrijeme akutne bolesti ima statistički značajno višu vrijednost inzulinske rezistencije nakon hospitalizacije prema svim jednostavnim indeksima u usporedbi sa skupinom koja je ostala normoglikemična za vrijeme akutne bolesti.

Pozitivna obiteljska anamneza šećerne bolesti statistički je značajno viša u hiperglikemičnoj skupini. Takvi rezultati ne iznenađuju već se uklapaju u odprije poznatu sliku patogeneze šećerne bolesti. Tezu o šećernoj bolesti kao genetski uvjetovanoj bolesti podupiru čvrsti dokazi. Naime kod pojedinca s pozitivnom obiteljskom anamnezom gdje je jedan roditelj obolio od šećerne bolesti tip II rizik razvoja bolesti tijekom života iznosi 40%, rizik je veći u slučaju da se radi o oboljeloj majci (12), dok rizik razvoja bolesti tijekom života raste na 70% u slučaju da su oba roditelja oboljela od šećerne bolesti tip II. Obzirom da je inzulinska rezistencija sastavni dio šećerne bolesti, razumljivo je da su se pojedinci kod kojih postoji genetska predispozicija za razvoj šećerne bolesti našli u grupi s višom razinom inzulinske rezistencije koja je razvila hiperglikemiju u akutnoj bolesti.
Vrijednosti indeksa tjelesne mase kao i vrijednost omjera struka i bokova također su bili statistički značajno viših vrijednosti u hiperglikemičnoj skupini. Rezultat je bio očekivan obzirom da je u znanstvenoj zajednici poznat utjecaj povećane tjelesne mase na nastanak inzulinske rezistencije. U podlozi nastanka inzulinske rezistencije povezane s pretilosti nalazi se stanje kronične upale koju uzrokuju proupalni citokini osobodeni od strane makrofaga te proupalni citokini koje proizvode hipertrofični adipociti (128), dok povećana dostupnost i iskorištavanje slobodnih masnih kiselina (FFA) pridonosi razvoju mišićne inzulinske rezistencije (97-100). Sukladno činjenici da se masno tkivo ponaša kao endokrini organ i u povećanoj količini lipotoksičnošću uzrokuje inzulinski rezistenciju (121), moglo se pretpostaviti da će se pojedinci s većim indeksom tjelesne mase i omjerom struka i bokova naći u skupini koja je razvila hiperglikemiju za vrijeme akutne bolesti, odnosno da će ti pojedinci imati višu razinu inzulinske rezistencije što je istraživanje i potvrdilo.

Multivarijatna analiza logističkom regresijom pokazala je neovisnu povezanost indeksa tjelesne mase, vrijednost omjera struka i bokova, HOMA-IR i QUICKI s pojavom hiperglikemije u akutnoj bolesti.

Relativno malen broj ispitanika i ograničenost na internističku jedinicu intenzivnog liječenja predstavljaju slabost ovog istraživanja. Hiperglikemija u akutnoj bolesti čest je nalaz i u jedinicama intenzivnog liječenja kirurških pacijenata. Iako bi sam mehanizm nastanka hiperglikemije trebao biti isti, upitno je mogu li se rezultati ovog istraživanja primijeniti i na kirurške pacijente. Može se pretpostaviti da je hiperglikemija u teškoj akutnoj bolesti kirurških pacijenata, koji nemaju manifestan poremećaj metabolizma glukoze, također povezana s intrinzično povišenom inzulinskom rezistencijom, no potrebno je proširiti istraživanje na kirurške pacijente kako to ne bi ostale samo pretpostavke.

Metelko i suradnici istraživanjem provedenim u sklopu First Croatian Health Project bavili su se primarno pitanjem prevalencije šećerne bolesti u Hrvatskoj (257). Osim točne procjene prevalencije šećerne bolesti ciljevi istraživanja bili su također procjena postotka bolesnika s IFG, nedijagnosticiranom šećernom bolesti te prevalencija inzulinske rezistencije unutar države. Studija je provedena u razdoblju 1995.-1997. godine na ukupno 10074 sudionika u dobi 18-80 godina, unutar 4 zemljopisne regije: 2 kontinentalne (područje Osijeka i Zagreba) te 2 mediteranske (područje Rijeke i Splita). Reprezentativni uzorak, od 5840 nasumično odabranih sudionika u dobi 18-65 godina, koji po dobi, spolu i regionalnoj distribuciji

67
odgovara nacionalnoj populaciji odabran je za analizu skupljenih podataka. Ukupno su analizirani podaci od 1635 sudionika. Reprezentativnost uzorka od 1635 sudionika potvrđena je statističkom analizom koja nije pokazala razliku u dobi, spolu i regionalnoj distribuciji između analiziranog uzorka (N=1635) i originalnog uzorka iz samog projekta (N=5840). Prema podacima dobivenim istraživanjem prevalencija šećerne bolesti u Hrvatskoj iznosila je 6.1% (95% CI 4.59-7.64) s bitnom razlikom u doboj raspodjeli, prevalencija IFG 11.3% dok je odnos nedijagnosticirane/dijagnosticirane šećerne bolesti iznosio 72/100.

Inzulinska rezistencija bila je procijenjena jednostavnim indeksom HOMA-IR. Za mjerenje razine inzulina korišten je radioimmunoassay (RIA) (Diagnostic Products Corporation, Los Angeles, CA, USA), s referentnom vrijednosti <22 µU/l, dok je IR računata prema formuli inzulin/(22.5e- ln BG). HOMA-IR >1 zabilježena je u 40.4% ispitivanih osoba, sa srednjom vrijednosti od 1.45±2.38 te statistički značajnom razlikom vezanom za dob, spol i regiju države, kao i za interakciju dobi i regije (p<0.01). HOMA-IR >1 statistički je značajno češća bila u muškoj populaciji te kod pojedinaca s većim BMI s nejednakom distribucijom po regijama. Prevalencija osoba s HOMA-IR>1 bila je veća u Osječkoj i Riječkoj regiji.

Na prvi pogled usporedba podataka o inzulinskoj rezistenciji dobivenih tijekom našeg istraživanja i dobivenih u prethodno navedenoj studiji izgleda jednostavna i moguća. Studija je dala pregled inzulinske rezistencije na državnoj razini i time omogućila usporedbu specifičnih grupa s prosječnom populacijom, dok je u oba istraživanja korišten isti jednostavni indeks HOMA-IR za procjenu inzulinske rezistencije čime je omogućena usporedba dobivenih podatke o inzulinskoj rezistenciji. Ignorirajući ograničenja koja HOMA-IR nosi sa svojom upotreblom, zaključilo bi se da obje grupe pacijenata u našem istraživanju imaju više razine inzulinske rezistencije nego prosječna hrvatska populacija (hiperglikemična skupina HOMA-IR 2.245±0.417, normoglikemična skupina HOMA-IR 1.839±0.224, hrvatska populacija HOMA-IR 1.45±2.38). Studija je provedena u periodu 1995.-1997.godine, a obzirom na rapidne promjene načina života i poznate podatke o Hrvatskoj kao sve debeljoj naciji te prevalenciju šećerne bolesti od 7.90% u 2014.godini (4), uz uvjet da i dalje ignoriramo ograničenja vezana za HOMA, javlja se pitanje koliko bi se danas dobivene brojke na razini populacije razlikovala od navedenih u studiji i samim time koliko bi se inzulinska rezistencija normoglikemične skupine razlikovala od prosjeka populacije. Nažalost tako jednostavna usporedba dobivenih podataka nije moguća radi niza ograničenja koja sa sobom nosi korištenje jednostavnog indeksa HOMA-IR i time prethodno spomenuta.
usporedba vrijednosti razina inzulinske rezistencije pacijenata u našem istraživanju i prosjeka hrvatske populacije postaje upitna.

Manley i suradnici su 2008. godine proveli istraživanje koje se bavilo utjecajem vrste krvnog uzorka (serum ili heparizirana plazma) ili odabira inzulinskog testa i HOMA kalkulatora na mjerenje inzulinske rezistencije i funkciju beta stanica (201). Istraživanje je pokazalo da se procjena HOMA ovisno o vrsti uzorka krvi (serum ili heparizirana plazma) razlikuje te da nije moguće direktno uspoređivati podatke dobivene iz različitog uzroka. Također su dokazane razlike vrijednosti HOMA ovisno o vrsti testa korištenog za analizu razine inzulina gdje su se razlike u usporedbi pojedinih testova pokazale čak dvostrukima. Prema provedenom istraživanju usporedbi pojedinih HOMA studija nisu moguće u slučaju upotrebe različitih testova za analizu razine inzulina. Prethodno opisana studija koristila je radioimmunoassay (RIA) (Diagnostic Products Corporation, Los Angeles, CA, USA), dok se u našem istraživanju serumska koncentracija inzulina analizirala elektrokemiluminescijskom metodom na Cobas E 601, Roche uređaju putem Roche Elecsys/E170 testa (Roche Diagnostics, Indianapolis, Indiana). Obzirom da u oba istraživanja nije korišten isti inzulinski test, nemoguće je uspoređivati dobivene podatke.

Iako normoglikemična skupina u našem istraživanju nikako ne predstavlja reprezentativni uzorak nacije, inzulinska rezistencija te grupe bi se teoretski mogla smatrati prosječnom inzulinskom rezistencijom nedijabetičara u Hrvatskoj. Ukoliko uzmemo vrijednost inzulinske rezistencije normoglikemične skupine dobivenu našim istraživanjem kao prosjek inzulinske rezistencije nedijabetičarske populacije Hrvatske uvida se statistički značajna viša razina inzulinske rezistencije pojedinaca koji su razvili hiperglikemiju u akutnoj bolesti. Obzirom da je multivarijatna analiza logističkom regresijom pokazala da je HOMA-IR između ostalih neovisno povezana s nastankom hiperglikemije u akutnoj bolesti, mišljenja smo da uzrok razvoja hiperglikemije u akutnoj bolesti u nedijabetičkoj populaciji leži upravo u intrinzično povišenoj razini inzulinske rezistencije.

Šećerna bolest tip II rastući je globalni javnozdravstveni problem koji je poprimio razmjere epidemije i predstavlja najveći izazov svjetskog zdravstva u 21.stoljeću. Brojke oboljelih od poremećaja metabolizma glukoze su alarmantne te svakodnevno rastu, dok sedatarni način života, financijski ograničena dostupnosti kvalitetnih prehrambenih namirnica i nedovoljna educiranost populacije još dodatno pripomazuju samom porastu broja oboljelih. Posljedice koje
šećerna bolest nosi sa sobom vrlo teške za same pacijente kao i za zdravstveni sustav i gospodarstvo te bi trebalo usmjeriti veću pažnju na prevenciju nastanka same bolesti putem javnozdravstvenih kampanja, odnosno na pravovremeno otkrivanje potencijalnih bolesnika i već oboljelih koji nisu svjesni svog trenutnog zdravstvenog stanja.

Grupa potencijalnih bolesnika obuhvaća pacijentice oboljele od od gestacijskog dijabetesa, a postoje dokazi da bi u tu skupinu trebalo uključiti i pacijente koji su razvili hiperglikemiju za vrijeme hospitalizacije radi akutne bolesti, koji prema sadašnjim rezultatima imaju intrinzično povišenu inzulinsku rezistenciju.

Gestacijska šećerna bolest se već dugi niz godina smatra rizičnim faktorom za razvoj šećerne bolesti u daljnjem životu. Sve pacijentice s dijagnozom gestacijske šećerne bolesti unutar Republike Hrvatske još za vrijeme trudnoće dobivaju detaljne informacije o bolesti, preporuke o promjeni načina života s naglaskom na preventivnim mjerama poput pravilne prehrane i redovite fizičke aktivnosti te upute o potrebi redovitog testiranja svog glikemijskog statusa tijekom daljnjeg života. Takav pristup osigurava preventivnu pokrivenost ove grupe potencijalnih bolesnica oboljelih od šećerne bolesti u daljnjem životu, no za druge potencijalne bolesnike na razini države nije razvijen sustavni pristup prevenciji i ranom otkrivanju novonastale bolesti.

Prema podacima dobivenim prospektivnim istraživanjem pacijenata bez poremećaja metabolizma glukoze koji su za vrijeme hospitalizacije radi akutne bolesti razvili hiperglikemiju relativni rizik razvoja šećerne bolesti 5 godina nakon hiperglikemije u akutnoj bolesti iznosi 5.6 (95% CI 3.1-10.2), dok relativni rizik razvoja poremećaja metabolizma glukoze (IFG ili IGT) iznosi 2.3 (95% CI 1.6-3.4) (215). Istraživanje je završeno na 591 pacijentu s periodom praćenja od minimalno 5 godina nakon hospitalizacije, dok je hiperglikemija u akutnoj bolesti bila definirana vrijednošću glukoze većom od 7.7 mmol/l. Autori istraživanja smatraju da se u podlozi nastanka hiperglikemije za vrijeme akutne bolesti nalazi kombinacija fizioloških faktora koji predisponiraju pacijente za sam razvoj hiperglikemije. Prema njihovoj interpretaciji dobivenih rezultata po završetku akutne bolesti vrijednosti razine glukoze vraćaju se unutar referentnih vrijednosti urednog nalaza, no poremećaj koji je doveo do nastanka hiperglikemije ostaje i kod pojedinih pacijenata dovodi do pojave poremećaja metabolizma glukoze u daljnjem tijeku života. Mišljenja su da metabolički poremećaj koji čini pacijente sklene hiperglikemiji u akutnoj bolesti vjerojatno
uključuje od prije postojeću povećanu inzulinsku rezistenciju i disfunkciju beta stanica. Prema njihovoj preporuci pacijente koji su razvili hiperglikemiju u akutnoj bolesti potrebno je redovito pratiti i pravovremeno započeti potrebno liječenje. Za sredstvo redovitog praćenja takvih bolesnika predlažu mjerenje HbA1c na godišnjoj razini.

Retrospektivno istraživanje koje se bavilo istom tematikom pokazalo je rizik razvoja šećerne bolesti od 2.6% (95% CI 2.5-2.7) kod hiperglikemije od 7.0 mmol/l te 9.9% (95% CI 9.2-10.6) kod hiperglikemije od 11.1 mmol/l s ukupnim rizikom razvoja šećerne bolesti 3 godine nakon hospitalizacije od 2.3% (230). Istraživanje je provedeno na ukupno 86 634 hospitalizirana pacijenta analizom podataka iz nacionalnih registara, gdje su pratili pacijente hitno hospitalizirane na internističkim i kirurškim odjelima. Prema autorima istraživanja vrijednosti glukoze izmjerene prilikom hitne hospitalizacije predviđaju rizik razvoja šećerne bolesti u daljnjem tijeku života. Oni smatraju da je potrebno informirati pacijente koji su prilikom hospitalizacije razvili hiperglikemiju o riziku razvoja šećerne bolesti te im ponuditi informacije vezane za promjenu životnog stila. Pacijentima koji su razvili hiperglikemiju u vrijednosti većoj od 11.0 mmol/l potrebno je predložiti ponovna testiranja njihovog glikemijskog statusa u razdoblju nakon hospitalizacije.

Istraživanja povezanosti hiperglikemije u akutnoj bolesti i razvoja šećerne bolesti u daljnjem životu treba proširiti na multicarente studije s većim brojem ispitanika, no činjenica je da određena povezanost postoji i ne bi ju trebalo ignorirati. U hrvatskim nacionalnim smjernicama o zbrinjavanju hiperglikemije u odraslih hospitaliziranih bolesnika nalazi se preporuka o praćenju pacijenta s hiperglikemijom akutne bolesti nakon hospitalizacije. Prema smjernicama prilikom otpusta iz bolnice pacijente koji su razvili hiperglikemiju za vrijeme akutne bolesti, a nemaju maniifestan poremaćaj metabolizma glukoze, potrebno je pratiti jer takvi pacijenti imaju povišen rizik od razvoja šećerne bolesti tip II. Pacijente je potrebno savjetovati o promjenama životnog stila kako bi se smanjio rizik razvoja šećerne bolesti što uključuje informiranje o zdravim prehrambenim navikama i važnosti redovite fizičke aktivnosti. Kod tih pacijenata potrebno je planirati redovite godišnje kontrole glikemijskog statusa kako bi se pravodobno ustanovila pojava šećerne bolesti. Obzirom na jednostavnost provedbe i financijsku pristupačnost godišnje određivanje HbA1C moglo bi se koristiti u svrhu sustavnog nadgledanja ove skupine rizičnih pacijenata.
Ovo istraživanje pokazalo je da pacijenti koji su razvili hiperglikemiju za vrijeme akutne bolesti imaju statistički značajno višu razinu inzulinske rezistencije spram pacijenta koji su ostali normoglikemični za vrijeme akutne bolesti. Mišljenja smo da uzrok razvoja hiperglikemije u akutnoj bolesti leži upravo u intrinzično povišenoj razini inzulinske rezistencije pojedinaca. Kao što je prethodno izloženo hiperglikemija u akutnoj bolesti predstavlja rizik razvoja šećerne bolesti i poremećaja metabolizma glukoze u daljnjem životu (215), dok sami autori istraživanja pretpostavljaju da metabolički poremećaj koji čini pacijente sklene hiperglikemiji u akutnoj bolesti vjerojatno uključuje odprite postojeću povećanu inzulinsku rezistenciju i disfunkciju beta stanica. Povezujući zaključke ta dva istraživanja dalo bi se zaključiti da intrinzično povišena inzulinska rezistencija uzrokuje hiperglikemiju u akutnoj bolesti koja je rizik za daljnji razvoj šećerne bolesti, odnosno logičkim slijedom da sama intrinzično povišena inzulinska rezistencija predstavlja rizični faktor za razvoj poremećaja metabolizma glukoze u daljnjem životu.

Dakako da je potrebno provesti daljnja istraživanja povezanosti intrinzične inzulinske rezistencije nedijabetičara i kasnijeg razvoja šećerne bolesti, no ukoliko smo spremni voditi se logikom, grupa ljudi s intrinzično povišenom inzulinskom rezistencijom također predstavlja rizičnu skupinu za razvoj šećerne bolesti u daljnjem životu. Ukoliko multicentrične studije s većim brojem pacijenata pokažu točnost prethodno spomenutog logičkog slijeda otvaraju se vrata novom pristupu pravovremenog prepoznavanja potencijalnih pacijenata oboljelih od šećerne bolesti i samih intervencija vezanih za moguće sprečavanje razvoja bolesti.

Mjerenje inzulinske rezistencije jednostavnim indeksima financijski je pristupačno i vrlo jednostavno za provedbu. Znanstvena zajednica ulaže velike napore u otkrivanje markera inzulinske rezistencije koji bi zauzeli mjesto u rutinskoj praksi čime bi se još dodatno olakšalo mjerenje inzulinske rezistencije i njezino praćenje. Sustavnom primjenom mjerenja inzulinske rezistencije prilikom sistematskih pregleda vrlo rano bi se zamijetili pojedinici povišenog rizika koje bi se nakon upoznавanja s preventivnim mjerama moglo dalje redovito pratiti. Takvim pristupom zasigurno bi došlo da smanjenja brojke nedijagnosticiranih pacijenata koji boluju od šećerne bolesti, dok bi pravovremene preventivne mjere smanjile razvoj šećerne bolesti kod određenog broja pacijenata. Naravno da bi bilo potrebno učiniti analizu koristi i troškova (cost-benefit analizu) sustavne primjene mjerenja inzulinske...
rezistencije, no gledajući enormousne iznose koji se troše na godišnjoj razini zbog komplikacija šećerne bolesti vjerojatnost da bi takav sustavni pristup bio preskup malo je izgledna.

Ukoliko daljnja istraživanja potvrde naše rezultate, u budućnosti bi mjerenje inzulinske rezistencije moglo služiti kao metoda probira rizičnih pacijenata za razvoj šećerne bolesti u daljnjem životu.
7. ZAKLJUČAK

Analizom dobivenih podataka potvrđena je hipoteza da je pojava hiperglikemije u teškoj akutnoj bolesti povezana s intrinzičnom povišenom inzulinskom rezistencijom kod pacijenata koji nemaju manifestan poremećaj metabolizma glukoze.

Osim toga, analiza podataka dobivenih istraživanjem pokazala je:

• Indeks tjelesne mase i omjer struka i bokova su povezani s pojavom hiperglikemije u akutnoj bolesti.

Obje karakteristike su neovisno povezane s pojavom hiperglikemije u akutnoj bolesti.

• Pozitivna obiteljska anamneza za šećernu bolest povezana je s pojavom hiperglikemije u akutnoj bolesti.

• Težina akutne bolesti mjerenja APACHE II i SOFA bodovnim sustavom povezana je s pojavom hiperglikemije u akutnoj bolesti.

• Dob, spol, vrijednost triglicerida i ukupnog kolesterolata te anamnestički podatak o pušenju predstavljaju karakteristike bolesnika koje nisu povezane s pojavom hiperglikemije u akutnoj bolesti.

• Jednostavni indeksi inzulinske rezistencije HOMA-IR i QUICKI neovisno su povezani s pojavom hiperglikemije u akutnoj bolesti.
8. SAŽETAK

Uvod: Inzulinska rezistencija karakterizirana je smanjenim odgovorom ciljanih stanica na izloženu koncentraciju inzulina. Teško ju je odvojiti od šećerne bolesti tip II, metaboličkog sindroma i pretilosti, a nalazi se u podlozi nastanka kardiovaskularnih i neurodegenerativnih bolesti. Hiperglikemija u akutnoj bolesti čest je nalaz kod pacijenata hospitaliziranih u jedinicama intenzivnog liječenja. Javlja se kod pacijenata s prethodno poznatim poremećajem metabolizma glukoze (DM, IFG, IGT), kao prva manifestacija dotada nedijagnosticirane šećerne bolesti te kod pacijenta koji imaju uredan metabolizam glukoze prije i nakon hospitalizacije. Hipoteza istraživanja jest da je pojava hiperglikemije u teškoj akutnoj bolesti povezana s intrinzično povišenom inzulinskom rezistencijom kod pacijenata koji nemaju manifestan poremećaj metabolizma glukoze.

Ispitanici i metode: U istraživanje su uključeni pacijenti primljeni u Zavod za intenzivnu medicinu Klinike za unutrašnje bolesti KBC Zagreb radi teške akutne bolesti. Pacijenti bez poznatog poremećaja metabolizma glukoze podijeljeni su u skupinu hiperglikemije (GUK >7.7 mmol/l u najmanje 2 mjerenja) i normoglikemije. Postojanje ranije neprepoznatog poremećaja metabolizma glukoze isključeno je određivanjem HbA1c za vrijeme hospitalizacije i OGTT učinjenim na ambulantnoj kontroli 6-8 tjedana nakon hospitalizacije. Na ambulantnoj kontroli 6-8 tjedana nakon hospitalizacije pacijentima je uzet uzorak krvi natašte iz kojeg je indirektnim metodama određena inzulinska rezistencija. Inzulinska rezistencija određena je jednostavnim indeksima: QUICKI, HOMA-IR, log HOMA-IR HOMA2-IR

Rezultati: Istraživanje je završeno na 221 pacijentu. Hiperglikemičnu skupinu činilo je 114 pacijenata, dok se u normoglikemičnoj skupini nalazilo 107 pacijenata. Analizom podataka među skupinama nije zamjećena statistički značajna razlika u dobi niti spolu pacijenata. Vrijednost indeksa tjelesne mase, omjera struka i bokova te pozitivna obiteljska anamneza šećerne bolesti bila je statistički značajno viša u hiperglikemičnoj skupini. Skupina bolesnika koja je razvila hiperglikemiju za vrijeme akutne bolesti ima statistički značajno višu vrijednost inzulinske rezistencije nakon hospitalizacije prema svim jednostavnim indeksima u usporedbi sa skupinom koja je ostala normoglikemična za vrijeme akutne bolesti. Multivarijatna analiza logističkom regresijom pokazala je neovisnu povezanost indeksa
tjelesne mase, vrijednost omjera struka i bokova, HOMA-IR i QUICKI s pojavom hiperglikemije u akutnoj bolesti.

Zaključak: Pojava hiperglikemije u teškoj akutnoj bolesti povezana je s intrinzično povišenom inzulinskom rezistencijom kod pacijenata koji nemaju manifestan poremećaj metabolizma glukoze.
9. SUMMARY

Intrinsic insulin resistance among nondiabetics and occurrence of hyperglycemia in critical illness

2016
Edita Lukić, MD

Introduction: Insulin resistance is characterized by reduced response of target cells to exposed insulin concentration. It is part of type 2 diabetes, metabolic syndrome, obesity and underlying cause of cardiovascular and neurodegenerative diseases. Hyperglycemia commonly occurs in the course of any critical illness. It appears both among patient with or without apparent glucose metabolism disorder. We hypothesised that the cause of hyperglycemia in critical illness among patients without apparent glucose metabolism disorder lies in intrinsically increased insulin resistance of those patients.

Patients and methods: Patients admitted to the intensive care unit of the University Hospital Centre Zagreb due to critical illness were included in the research. Patients with no history of impaired glucose metabolism were divided into hyperglycemia group (glucose >7.7 mmol/l, measured on at least two occasions) and normoglycemia group. Glycated haemoglobin during hospital stay and oral glucose tolerance test within 6-8 weeks after discharge were all performed in order to disclose patients with unknown diabetes or pre-diabetes who were excluded from the research. On the ambulatory appointment 6-8 weeks after discharge insulin resistance is assessed by indirect methods. Insulin resistance was measured with simple indices: QUICKI, HOMA-IR, log HOMA-IR HOMA2-IR

Results: Research was concluded on 221 patients, 114 were in hyperglycemia group while 107 were part of normoglycemia group. There were no significant differences in age nor sex among groups. BMI, WHR and positive family history of DM type II showed higher values in hyperglycemia group. Patients in hyperglycemia group had significant higher values of insulin resistance measured with all simple insulin resistance indices compared with patients in normoglycemia group. Multivariate logistic regression analysis showed independent association of BMI, WHR, HOMA-IR and QUICKI with occurrence of hyperglycemia in acute illness.

Conclusion: Occurrence of hyperglycemia in critical illness among patients without apparent glucose metabolism disorder is associated with intrinsically increased insulin resistance.
10. LITERATURA

42. Shulman GI. Cellular mechanisms of insulin resistance in humans. Am J Cardiol 1999;84:3J–10J.

Frayling TM. Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes. Hum Mol Genet. 2010;19(3):535-44.

90. Osawa H, Tabara Y, Kawamoto R, Ohashi J, Ochi M, Onuma H, Nishida W, Yamada K, Nakura J, Kohara K, Miki T, Makino H. Plasma resistin, associated with single nucleotide polymorphism -420, is correlated with insulin resistance, lower HDL cholesterol, and high-

151. Potenza MA, Marasciulo FL, Chieppa DM, Brigiani GS, Formoso G, Quon MJ, Montagnani M. Insulin resistance in spontaneously hypertensive rats is associated with endo-

249. Pollack CV Jr, Braunwald E. 2007 update to the ACC/AHA guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial

