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Abstract 

Purpose Iron overload accelerates bone loss in mice lacking bone morphogenetic protein 6 (Bmp6) gene which is 

the key endogenous regulator of hepcidin, iron homeostasis gene. Here we investigated involvement of other 

BMPs in the prevention of hemochromatosis and subsequent osteopenia in Bmp6-/- mice. 

Methods Iron-treated WT and Bmp6-/- mice were analyzed for hepcidin mRNA, tissue and blood BMP levels by 

qRT-PCR, immunohistochemistry, Western blot, ELISA and Proximity Extension Assay. BMPs labeled with 

technetium 99m were used in pharmacokinetic studies.  

Results In WT mice, 4 hours following iron challenge liver Bmp6 and hepcidin expression were increased, while 

expression of other Bmps was not affected. In parallel, we provided the first evidence that BMP6 circulates in 

WT mice and that iron increased the BMP6 serum level and the specific liver uptake of 
99m

Tc-BMP6. In Bmp6-/- 

mice, iron challenge lead to blunted activation of liver Smad signaling and hepcidin expression with a delay of 

24 hours, associated with increased Bmp5 and Bmp7 expression, and an increased expression of Bmp2, 4, 5 and 9 

in the duodenum. Liver Bmp7 expression and increased circulating BMP9 eventually contributed to the late 

hepcidin response. This was further supported by exogenous BMP7 therapy resulting in an effective hepcidin 

expression followed by a rapid normalization of plasma iron values and restored osteopenia in Bmp6-/- mice.  

Conclusion In Bmp6-/- mice iron activated endogenous compensatory mechanisms of other BMPs that were not 

sufficient for preventing hemochromatosis and bone loss. Administration of exogenous BMP7 was effective in 

correcting the plasma iron level and bone loss indicating that BMP6 is an essential but not exclusive in vivo 

regulator of iron homeostasis.   
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Introduction 

Osteoporosis is a frequent problem in disorders characterized by iron overload, but mechanisms leading 

to bone loss are not well understood. Recent studies have clearly shown that iron overload accelerates bone loss 

with decreased bone mineral density (BMD) in patients with hemochromatosis, particularly in males [1,2]. In 

addition, in iron treated mice an increase in bone resorption and osteoclast number has been found, without a 

change in the osteoblast number and bone formation parameters [3]. Furthermore, iron overload is associated 

with osteopenia and osteoporosis as evidenced in Bmp6-/- mice [4] and in humans. Whether this is caused by a 

direct effect of iron on bone or mutations in hemochromatosis related genes, including Bmp6, remains to be 

determined. 

Systemic iron balance is regulated by the rate of iron entry from the diet and iron release from 

hepatocyte stores and from macrophages that recycle iron from aged or damaged erythrocytes. Our 

understanding of the iron metabolism has advanced in the past decade, mainly as a result of the discovery of 

hepcidin (Hamp), a key regulator of systemic iron homeostasis [5]. Secreted by the liver, hepcidin induces the 

internalization and lysosomal degradation of iron exporter ferroportin present on the surface of enterocytes, 

macrophages and hepatocytes, and thereby inhibits intestinal iron absorption and macrophage iron release [6]. 

Hepcidin expression is induced by dietary [5] or parenteral iron loading [7], suggesting its compensatory role in 

iron homeostasis. Conversely, hepcidin expression is suppressed in conditions of iron deficiency and tissue 

hypoxia thus increasing the iron availability for erythrocyte production [8].  

Recent studies have demonstrated a critical role for bone morphogenetic protein (BMP) signaling in the 

regulation of hepcidin expression, which involves interaction with the BMP co-receptor hemojuvelin (HJV) 

[9,10], and translocation of Smad complexes into the nucleus [11,12].  

Support for the involvement of the BMP signaling pathway in the regulation of hepcidin also comes 

from the observation that the liver-specific Smad4 knockout mouse manifests nearly complete deficiency of 

hepcidin and a systemic iron overload [13]. Additionally, it has been demonstrated that a loss of Bmp6 function 

in mice leads to a reduced hepatic hepcidin expression and iron overload, suggesting that BMP6 is the key 

endogenous regulator of hepcidin and iron metabolism [14,15]. While BMP6 administration increases hepcidin 

expression and reduces serum iron levels in vivo [16], BMP inhibitors reduce hepatic hepcidin expression, 

mobilize reticuloendothelial iron cell stores, and increase the serum iron
 
[10,14,17].  

Although BMP6 is the key endogenous regulator of hepcidin expression and iron metabolism, several 

studies have shown that other BMPs also stimulate hepcidin expression in vitro [9,10,13,18]. Additionally, 

recent comparative studies of four hereditary hemochromatosis mouse models, including Bmp6-/- mice, 

observed the presence of distinct pathways of hepcidin regulation which raises the possibility of other BMP 

involvement in iron homeostasis [19]. It is, therefore, unknown whether other BMPs can regulate hepcidin 

expression in vivo, and why they do not fully correct for the iron overload in Bmp6-/- mice, since the BMP 

redundancy has been well documented [20,21]. 

Systemic challenge with iron rapidly induces Smad1/5/8 phosphorylation and the expression of Bmp6 

and Hamp [17,22], but the mechanisms by which BMP6 “senses” the iron status is not understood, and whether 

liver is the exclusive origin of endogenous BMP6 has been debated. Recently, it has been demonstrated that 

following an iron administration in mice with a 129Sv/Ev background, Bmp6 expression was upregulated in the 

small intestine [23]. In several subsequent studies, it was
 
suggested that the liver and not duodenum was the main 
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source of iron-induced Bmp6 expression either by an iron-enriched diet or by inactivation of the Hfe or Hfe2 

gene [24,25,26].
 
Furthermore, it is not known whether BMP6 is the sole mediator of the iron-hepcidin axis.  

Here, we found that iron overload induced hepatic Bmp6 mRNA, which was accompanied by an 

increase of circulating BMP6. In the absence of BMP6, iron stimulated hepatic Bmp5 and 7 mRNA and other 

Bmps in the duodenum which resulted in a modest and delayed hepcidin expression. Administration of 

exogenous BMP7 normalized the hepcidin expression and corrected for bone loss, suggesting that upregulated 

endogenous BMP7 in Bmp6-/- mice was not sufficient for an adequate iron regulation and bone metabolism.  



5 

 

Materials and methods 

 

Animals  

Animals were maintained in accordance with the NIH Guide for the Care and Use of Laboratory Animals. All 

experiments were approved by the Institutional Animal Care Review and Ethics Committee, University of 

Zagreb, School of Medicine. Animals were maintained on standard GLP diet (4RF21, Mucedola, Italy; 180 

mg/kg iron). For iron treatment experiments three months old Bmp6-/- mice with a mixed 129Sv/C57 

background (kindly provided by Elizabeth Robertson) [27] and WT mice matched for the background strain (n = 

5/group; genders were matched between groups) received an i.v. dose of iron-dextran (200 mg iron/kg body 

weight; ferric hydroxide dextran complex, Sigma-Aldrich). Animals were sacrificed and tissues harvested at 4, 8 

and 24 hours after injection. For measuring BMPs in the serum, blood was collected at 12, 24 and 48 hours after 

iron application. For single BMP injection experiments, 3 months old WT and Bmp6-/- mice received an i.v. 

injection of BMP7 at the dose of 500 µg/kg (n = 5/group). Serum and livers were harvested for analysis 6 hours 

after injection. In additional experiment, 10 weeks old Bmp6-/- mice were ovariectomized (n = 14) and 15 days 

later divided into following treatment groups: 1) Bmp6-/- + vehicle (n = 7); 2) Bmp6-/- + BMP7 (10 µg/kg, 

3x/week; n = 7). Sham Bmp6-/- operated mice served as a positive control (n = 7). Vehicle injection was 

prepared as acetate buffer (pH = 4.5) with 5% mannitol. The same buffer has been used for dissolving 

lyophilized BMP7 (Creative Biomolecules). After 4 months, these mice were sacrificed. Bone mineral density 

(BMD) was measured by Dual X-Ray Absortiometry (DXA) (Hologic 600), using company’s small animal 

software.  

 

Serum analyses  

Serum was analyzed for iron concentration and unsaturated iron-binding capacity (UIBC) by standard 

spectrophotometric method using the Olympus AU2700 (Beckman-Coulter-Olympus).   

 

Production of the BMP6 monoclonal antibody 

BMP6 monoclonal antibody 9F2 was produced using a standard protocol. In ELISA, less than 10% cross-

reactivity with recombinant mature BMP7 was observed.  

 

Immunohistochemical staining  

Tissues from Bmp6-/- and WT mice were fixed in 10% formalin and were paraffin embedded. Sections were cut 

at 5 µm, deparaffinized in xylene and hydrated in distilled water. Immunocytochemistry was performed using the 

immunoperoxidase detection system (Zymed, San Francisco, CA). Tissues were incubated with monoclonal 

BMP6 antibody 9F2 and hepcidin (56-Z) Antibody (1:50; Santa Cruz Biotechnology). BMP7 was detected 

immunohistochemically as described previously [28].  

 

Gene expression analyses  

Total RNA was isolated from tissues and primary hepatocytes using TRIzol (Invitrogen). The cDNA was 

generated by reverse-transcription of 1 µg adjusted RNA using Super Script III First-Strand Synthesis System 

(Invitrogen). Gene expression of interest was measured by using a LightCycler FastStart DNA Master SYBR 
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Green kit in a LightCycler instrument (Roche Diagnostics), as described [29]. Results are represented as a fold 

change of the comparative expression level. The list of primers used is shown in Table 1.  

 

SDS gel electrophoresis and Western blot analyses  

Tissues were disrupted with a manual homogenizer in RIPA buffer. Serum (5 µl), duodenum (50 µg) and liver 

lysates (150 µg) were subjected to SDS-PAGE and transferred to the nitrocellulose membrane. The blots were 

saturated with 2% BSA in Tris buffered saline containing 0.05% Tween (TBS-T) and probed overnight at 4°C 

with primary antibodies against BMP6 (1:400; School of Medicine, Rijeka), BMP9 (1:1000; R&D Systems), 

phosphorylated Smad1/5/8 (1:1000; Cell Signaling), Smad1/5/8 (1:200; Santa Cruz Biotechnology) or β-actin 

(1:1000; Millipore). Immunolabeling was detected using alkaline phosphatase-conjugated secondary antibodies 

and BCIP/NBT substrate (Sigma) and the proteins were quantified using ImageJ software (NIH). Results are 

presented as the mean of duplicates. 

 

Mass spectrometry 

After Coomassie staining, each of the gel lanes was sliced in 15 pieces and the corresponding pieces were 

combined. The pieces were then subjected to in-gel reduction, alkylation and trypsin digestion. Tryptic peptides 

were analyzed by a liquid chromatography-mass spectrometry (LC-MS). Easy-nLC nanoflow HPLC system 

(Proxeon Biosystems) was coupled to a LTQ-Orbitrap mass spectrometer (Thermo Scientific) using a nano-

electrospray LC-MS interface (Proxeon Biosystems). Peptides were loaded on a home-made 75 µm C18 HPLC 

column in solvent “A” (0.5% acetic acid in Milli-Q water) and eluted with a 70-minute segmented linear 

gradient of 10-60% solvent “B” (80% acetonitrile, 0.5% acetic acid in Milli-Q water) at a flow rate of 250 

nL/min as described [30]. 

 

Serum measurement of BMP6, BMP7 and BMP9  

Serum samples were tested for BMP7 and BMP9 by using BMP7 ELISA kit
 
[31] (R&D Systems) and BMP9 

ELISA kit [32] (AdipoBiosciences) according to the manufacturer's instructions. For sensitive BMP6 detection 

and quantification we employed the Proximity Extension Assay technology using the Proseek Assay 

Development kit (Olink Bioscience). Mouse BMP6 antibodies (AF6325; R&D Systems) which showed 

approximately 5% cross-reactivity with recombinant mouse BMP5 and BMP7 were conjugated with a pair of 

DNA oligonucleotides and upon binding to the target protein in 1 µl of serum sample, a DNA duplex is formed 

and extended in real-time PCR according to manual's instructions. 

 

Pharmacokinetics and biodistribution of 
99m

Tc-BMP6 and 
99m

Tc-BMP7  

For technetium labeling we used the Isolink Kit Mallinckrodt (Covidien Pharmaceuticals; kind gift of Dr. Hector 

H. Knight). A 
99m

Tc-pertechnetate solution eluted from the Technetium-99m generator was added to the IsoLink 

carbonyl labeling agent (DRN4335; Mallinckrodt), and the mixture was incubated in a boiling water bath for 20 

min. The obtained solution of [
99m

Tc(H2O)3(CO)3]
+
 (1 mL) was neutralized with 0,1 N HCl solution and mixed 

with a solution of BMP6 in PBS and incubated at 60°C for 30 minutes. Four months old Sprague-Dawley rats 

(n=4/group; females) received a single i.v. injection of 10 µg/kg 
99m

Tc-BMP6 with the activity of 45 µCi in a 

volume of 300 µl. Another group of rats (n=4/group) was treated with 200 mg/kg iron at 24 hours prior to 
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receiving 
99m

Tc-BMP6. Animals were sacrificed 3 hours following injection of 
99m

Tc-BMP6. For comparison, 

BMP7 was also labeled with 
99m

Tc-BMP6 and used similarly. Blood and organs were isolated and the 

radioactivity was measured in a gamma counter, and expressed as a percentage (%) of the applied dose in counts 

per minute (cpm). All values were corrected for the half-life of 
99m

Technetium. 

 

Data analyses  

Results are reported as the mean ± SEM. Changes in gene expression and serum parameters were evaluated 

using the 2-tailed Student t test. The results were considered significant when P was < 0.05.  

 

Results 

 

99m
Tc-BMP6 accumulated in liver following iron administration 

Four hours after iron administration Bmp6 expression in the liver was increased by 4.7-fold (Fig. 1a), 

accompanied by an increase in hepatic hepcidin mRNA by 4.9-fold (Fig. 1b). In the duodenum, in parallel, Bmp6 

mRNA expression was decreased following iron injection, while in the jejunum it was unchanged (Fig. 1a). This 

was confirmed by immunohistochemistry using an antibody raised against the mature domain of BMP6 (Fig. 1c, 

i-ii) and against hepcidin (Fig. 1c, iii-iv). BMP6 was previously shown to be restricted to non-parenchymal liver 

cells (stellate and Kupffer cells) [33]. However, we found that the BMP6 localization in iron loaded livers was 

dominantly in hepatocytes of periportal zone of liver acini which was not observed in Bmp6-/- mice (Fig. 1d). To 

further explore whether iron affects the biodistribution of BMP6 and to confirm hepatic source of BMP6, we 

developed a procedure of labeling BMP6 with 
99m

Technetium (
99m

Tc-BMP6) using the Isolink labeling kit. 

BMP6 structure and function were well maintained following labeling as evidenced by gel electrophoresis and 

Western blot of 
99m

Tc-BMP6, as well as the activity of a BMP-responsive luciferase reporter (BRE-Luc) in 

C2C12 cells (data not shown). 
99m

Tc-BMP6 concomitantly administered with iron to rats, predominantly 

accumulated in the liver at 3 hours following an iron injection, while its uptake by the duodenum, jejunum, 

kidney and blood was similar to control animals (Fig. 1e). To determine whether accumulation in the liver was 

specific for BMP6 we used 
99m

Tc labeled BMP7 and found similar results in iron loaded and control animals 

(data not shown).  

 

BMP6 circulated in serum and correlated with induced iron overload in WT mice  

Recently published data suggested that in WT mice, iron significantly increased BMP6 in serum, represented as 

a 23kDa band by Western blot analysis using the Santa Cruz S-20 anti-BMP6 antibody [23]. However, this 

antibody was shown to be nonspecific for mouse BMP6 in Western blot experiments as the 23kDa band was also 

observed in Bmp6-/- mice [24]. Under similar experimental conditions, using LC-MS, we did not detect BMP6 

in the total serum sample of iron loaded mice. Moreover, the 23kDa band detected by a Coomassie staining did 

not contain BMPs but several unrelated proteins predominantly retinol binding protein 4 (Rbp4) and 

Apolipoprotein M (apoM) (Fig. 2a).  

In order to determine whether BMP6 circulates, we analyzed biological fluids of mouse and human using the 

human BMP6 DuoSet ELISA (R&D Systems), but failed to detect BMP6 in the serum (data not shown). To 

enhance the assay sensitivity and simplify the BMP6 measurement procedure, we developed an alternative assay, 
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the Proximity Extension Assay (PEA) which is reported to measure protein levels from 0.01-10 000 pM (Olink 

Bioscience). Our results indicated that the lower detection limit or sensitivity of the assay was 10 pg/mL, as this 

is the concentration of two standard deviations above the background. For BMP6 detection we used mouse 

BMP6 antibodies (R&D Systems) and determined that BMP6 circulates at 55.46 ± 9.8 pg/mL in only 1 µL of 

mouse serum. Iron challenge, as measured by PEA, increased circulating levels of BMP6 in WT mice at 12 

hours to 109.96 ± 25.4 and at 24 hours to 128.7 ± 21 pg/mL (Fig. 2b). The background level in Bmp6-/- mice 

was in the range 5 - 10% of control values in WT mice (data not shown).  

 

Iron injection resulted in delayed Smad 1/5/8 signaling and hepcidin response in Bmp6-/- mice 

We next tested the effects of an iron overload on the temporal dynamics of hepcidin expression in Bmp6-/- mice 

relative to WT control mice. In Bmp6-/- mice, liver Hamp mRNA induction by iron was delayed and dampened 

compared to WT mice. There was a trend toward increased Hamp mRNA expression by 2-fold at 8 hours and 

4.3-fold at 24 hours after an iron injection, as demonstrated by qPCR (Fig. 3a) and immunohistochemical 

staining (Fig. 3b).  

As BMP signaling has been shown to induce hepcidin expression, we tested whether phosphorylation of Smad 

1/5/8 was modulated in the liver extract of iron challenged Bmp6-/- mice. At 24 hours iron increased 1.9-fold the 

Smad 1/5/8 phosphorylation in liver lysates of Bmp6-/- mice (Fig. 3c), suggesting that other BMPs have been 

activated to stimulate liver Smad signaling, however, insufficient for an appropriate Hamp response.  

 

Iron administration affected BMPs in liver, duodenum and circulation of Bmp6-/- mice 

Next, we investigated the expression of other BMPs and their potential role in the hepcidin regulation. Bmp2, 4, 

5, 7 and 9 transcripts were not changed in the liver and duodenum of WT mice during 8 hours following iron 

injection, except for decreased Bmp2 in the duodenum (Fig. 4a-e).  

On the contrary, in Bmp6-/- mice, iron time-dependently increased Bmp2, 4, 5, and 9 expression in the 

duodenum (Fig. 5a-d). In the liver, Bmp5 mRNA was slightly increased at 24 hours after iron administration in 

Bmp6-/- mice (Fig. 5c). As BMP9 has been previously claimed to circulate [26], we measured its serum level, 

and found in Bmp6-/- mice an increased serum BMP9 concentration at 24 hours following iron administration 

(Fig. 5e). Furthermore, immunoblot analyses confirmed that at 12 hours BMP9 protein was increased in the 

duodenum of Bmp6-/- mice and decreased at 24 hours (Fig. 5f). This suggested that BMP9 from the gut might 

have been released into the blood, as an attempt by the duodenum to contribute in the prevention of iron 

overload caused by the lack of BMP6. 

Liver Bmp7 expression was, however, increased by 3.8-fold at 4 hours (Fig. 6a) and 3.27-fold at 8 hours (not 

shown), which was also verified by BMP7 immunostaining of liver sections (Fig. 6b). Together, these data 

suggested that in the liver of Bmp6-/- mice, Bmp7 was upregulated at an early time point and Bmp5 at a later 

time point after iron injection, while Bmp2, 4, 5 and 9 were time-dependently increased in the duodenum. 

However, these compensatory mechanisms in Bmp6-/- mice were not sufficient to invoke an adequate BMP-

dependent defense against iron overload to prevent hemochromatosis.  

 

Exogenous BMP7 increased hepcidin expression, reduced iron accumulation and corrected for bone loss in WT 

and Bmp6-/- mice  
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We have previously shown that BMP6 administration increases hepatic Hamp mRNA expression and reduces 

serum iron in a dose-dependent manner [14]. To examine a potential of exogenous BMP7 administration on 

hepcidin expression and plasma iron distribution, WT and Bmp6-/- mice were treated i.v. with BMP7. Indeed, 

BMP7 significantly increased the liver Hamp mRNA by 20-fold and reduced the serum iron level in Bmp6-/- 

mice at 6 hours (Fig. 7a and b), which was verified by hepcidin immunohistochemistry of liver sections (Fig. 

7c). Interestingly, in WT mice, the induction of hepcidin expression and the reduction of serum iron following 

BMP7 injection were modest as compared to Bmp6-/- mice. However, as Bmp6-/- mice contain much less 

hepcidin, the immunohistochemical analyses of the liver showed only moderate increase in hepcidin staining in 

Bmp6-/- mice than in WT mice. The induction of liver Smad1/5/8 phosphorylation by BMP7 in Bmp6-/- mice 

was also significant, mirroring the hepcidin response (Fig. 7d). Thus, exogenous BMP7 ameliorated the hepcidin 

deficiency in Bmp6-/- mice, suggesting that these animals were primed to respond to compensatory regulation by 

endogenous BMPs which were however too low to adequately upregulate hepcidin and prevent 

hemochromatosis. In addition, i.v. therapy with BMP7 (10 µg/kg) for 4 months significantly increased the bone 

volume in ovariectomized Bmp6-/- mice (Fig. 8). 
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Discussion 

 

Endogenous BMP6 increases hepcidin expression and reduces the serum iron in mice, and has a key role in the 

iron metabolism [14,15]. Recently, it has been suggested that epithelial cells of the small intestine are the main 

source of BMP6 upon “sensing” iron in vivo and that enterocytes produce and release BMP6 into the circulation 

to reach the liver and regulate hepcidin expression [23]. In contrast, we and others [24,25] have shown that iron 

increased the hepatic Bmp6 expression in WT mice without affecting its expression in the duodenum or jejunum. 

We were, however, not able to detect BMP6 in serum (5 µl) by LC-MS analyses as have been previously 

suggested [23]. Indeed, we demonstrated that the previously reported ~23kDa band detected by Western blot
 
[23] 

did not contain BMP6. Furthermore, using the DuoSet ELISA (R&D Systems) we could not detect BMP6 in 

biological fluids of mouse and human. Therefore, we developed a BMP6 Proximity Extension Assay which 

enabled us to analyze BMP6 in 1 µl serum samples before and following iron exposure. We showed that BMP6 

circulates in the serum, and this is the first demonstration of a physiological range of circulating BMP6. 

Furthermore, we found that iron loading was followed by a BMP6 increase in mouse serum indicating that 

circulating levels of BMP6 may reflect body iron status. Interestingly, in untreated mice BMP6 concentrations 

displayed a diurnal variation, with concentrations being lowest in the morning and increasing throughout the day 

before declining during evening hours. Given the already known hepcidin diurnal rhythm [34], our results 

suggest that hepcidin variations might reflect the BMP6 circulating pattern. Our further goal is to determine the 

range of circulating BMP6 in healthy individuals and patients with osteoporosis, and search for any 

discrepancies. Iron loading was also followed by a pronounced increase of hepatic Bmp6 mRNA and protein as 

well as hepcidin mRNA, indicating a major role for hepatic BMP6 in protecting the organism against iron. 

Consistent with this, the biodistribution of i.v. injected 
99m

Tc-BMP6 showed a higher liver uptake of BMP6 in 

the presence of iron as compared to a lesser uptake in the liver of 
99m

Tc-BMP7.  

To assess other potential mediators in iron homeostasis, we analyzed the hepcidin response to iron in Bmp6-/- 

mice. Twenty four hours following iron injection, hepcidin expression was increased in the liver, but failed to 

reach the hepcidin level seen in WT mice. Also, iron injection caused hepatic Smad1/5/8 activation, which led to 

the hypothesis that BMPs, other than BMP6, have been activated to mediate hepcidin expression in response to 

iron, although at an insufficient level. Similar modulation of hepcidin mRNA has been previously reported in 

Bmp6-/- mice at the 21st day of chronic iron loading [19]. These results suggest that in response to iron, 

increased hepcidin in Bmp6-/- mice could be regulated via other pathways. 

Indeed, in Bmp6-/- mice, we showed a time-dependent increase of Bmp2, 4, 5 and 9 mRNA in the duodenum 

following iron injection. In addition, increased duodenal Bmp9 expression was accompanied by increased serum 

BMP9, suggesting that BMP9 might have been released from the gut into the circulation. Previous studies have 

demonstrated that BMP2, 4 and 5 can all bind to hemojuvelin, the BMP co-receptor that plays an essential role in 

hepcidin regulation and iron homeostasis [9] with high affinity (KD’s 4.5 – 17 nM) [35]. Moreover, BMP2, 4, 5 

and 9 can all stimulate hepcidin expression in vitro and BMP2 can stimulate hepcidin expression in vivo [10,18]. 

Notably, duodenal expression of BMPs was not upregulated by a single injection of iron in WT mice, suggesting 

that a functional role, if any, for these duodenal BMPs in hepcidin regulation and systemic iron homeostasis may 

be limited to pathologic conditions or more prolonged iron exposure. Future studies will be needed to further 
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explore the role of endogenous circulating BMP9 and other duodenal upregulated BMPs in hepcidin regulation 

and iron homeostasis in Bmp6-/- mice and other conditions.  

In the liver of Bmp6-/- mice, we found a moderately increased Bmp5 at 24 hours and more significant increase of 

Bmp7 at 4 and 8 hours after an iron injection. Interestingly, iron injection also caused a trend toward increased 

liver Bmp5 expression in WT mice, but did not affect liver Bmp7 expression. Although BMP7 is predominantly 

produced in the kidney and bone [36], hepatocytes have also been recognized as a source of BMP7 [31,37], 

albeit with low basal levels. BMP7 has also been demonstrated to bind to hemojuvelin with high affinity (KD 

20nM) [35] and to stimulate hepcidin expression in vitro
 
[10]. To determine the BMP7 effect on hepcidin 

expression in vivo, we treated WT and Bmp6-/- mice with exogenous BMP7, which induced hepcidin expression 

and Smad 1/5/8 phosphorylation. The more robust response of Bmp6-/- mice compared to WT animals to 

exogenous BMP7 suggests an adaptation to BMP6 loss by increasing sensitivity to BMP7, but the exact 

mechanism should be further explored. In addition, systemically applied BMP7 to ovariectomized Bmp6 -/- mice 

increased the bone volume and restored the bone microarchitecture and quality of the skeleton.  

These results support an alternative mechanism for hepcidin regulation in Bmp6-/- mice, which involves BMPs 

other than BMP6. However, although an exogenous dose of BMP7 in Bmp6-/- mice resulted in an increased 

bone volume and hepcidin expression which reached levels of those from WT mice, the lack of an early hepcidin 

response after iron injection in Bmp6-/- mice was presumably due to an insufficient endogenous amount of BMP 

required to substitute for BMP6. BMP6 is an essential, but not exclusive endogenous regulator of hepcidin in 

prevention of hemochromatosis in Bmp6-/- mice.  
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Fig. 1 Iron increased hepatic Bmp6 and hepcidin expression. Three months old WT mice received an i.v. 

injection of iron-dextran at 200 mg/kg body weight (n=5/group). Four and 8 hours after the injection, tissues 

were analyzed for (a) Bmp6 relative to Gapdh mRNA by qRT-PCR, (b) hepatic Hamp relative to Gapdh mRNA 

by qRT-PCR, (c) immunohistochemical staining of liver using BMP6 monoclonal antibody (i-ii) and hepcidin 

antibody (iv-v) including negative control (iii/vi) at original magnification x20 and (d) immunohistochemical 

staining of iron loaded liver using BMP6 monoclonal antibody (original magnification x40) in WT and Bmp6-/- 

mice. (e) Rats (n=4/group) treated with 200 mg/kg iron  received 24 hours later a single injection of 
99m

Tc-BMP6 

at a dose level of 10 µg/kg, while control animals received only 
99m

Tc-BMP6. Animals were sacrificed 3 hours 

following a 
99m

Tc-BMP6 injection. The organ uptake is expressed as a percent of injected dose per gram of tissue 

wet weight. Results are reported as the mean ± SEM. Exact P values are shown. 
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Fig. 2 Iron increased BMP6 circulating levels in WT mice. Serum samples of mice loaded with iron were 

submitted to SDS gel electrophoresis after which each protein band was analyzed by (a) liquid chromatography-

mass spectrometry (LC-MS) including the 23 kDa band previously identified as a mature BMP6
 
[23]. For BMP6 

quantification, serum was collected at zero, 12 and 24 hours following iron injection and BMP6 was measured in 

(b) Proximity Extention Assay (*P = 0.01 compared with time zero and 0.038 compared with 24 hours control). 

Results are reported as the mean ± SEM. Exact P values are shown. 
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Fig. 3 Bmp6-/- mice showed delayed hepcidin response and Smad 1/5/8 signaling to iron loading. Three months 

old Bmp6-/- mice were treated with iron-dextran and were killed at 0, 4, 8 and 24 hours following injection 

(n=5/group). Liver tissues were analyzed for hepatic (a) Hamp relative to Gapdh mRNA by qRT-PCR, (b) 

immunohistochemical staining with hepcidin antibodies (original magnification x20) and (c) hepatic 

phosphorylated Smad 1/5/8 relative to Smad 1/5/8 protein level by Western blot at 4, 8 and 24 hours following 

iron injection. Results are reported as the mean ± SEM. Exact P values are shown. 
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Fig. 4 Iron decreased Bmp2 expression in duodenum, while other Bmps remained unchanged in WT mice. Three 

months old WT mice received an i.v. injection of iron-dextran at 200 mg/kg body weight (n=5/group). Four and 

8 hours after the injection, tissues were analyzed for (a) Bmp2, (b) Bmp4, (c) Bmp5, (d) Bmp7 and (e) Bmp9 

relative to Gapdh mRNA by qRT-PCR. Results are reported as the mean ± SEM. Exact P values are shown.  
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Fig. 5 Iron increased expression of Bmp2, 4, 5 and 9 in duodenum of Bmp6-/- mice. Three months old Bmp6-/- 

mice were treated i.v. with iron-dextran at 200 mg/kg and were killed at 0, 4 and 24 hours after injection 

(n=5/group). Tissues were analyzed for (a) Bmp2, (b) Bmp4, (c) Bmp5 and (d) Bmp9 relative to Gapdh mRNA 

by qRT-PCR. (e) BMP9 serum levels were measured with commercial BMP9 ELISA at several time points 

between 0 and 24 hours after iron injection (*P = 0.04 compared with zero point and 0.007 compared with 24 

hours control) and (f) BMP9 relative to β-actin expression by Western blot at 12 and 24 hours following iron 

overload in the duodenum. Results are reported as the mean ± SEM. Exact P values are shown.  
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Fig. 6 Iron induced Bmp7 expression in the liver of Bmp6-/- mice. Three months old Bmp6-/- mice were treated 

i.v. with iron-dextran at 200 mg/kg and were killed at 0, 4 and 24 hours after injection (n=5/group). Tissues were 

analyzed for (a) Bmp7 relative to Gapdh mRNA by qRT-PCR, (b) hepatic BMP7 staining (original 

magnification x20). Results are reported as the mean ± SEM. Exact P values are shown.   
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Fig. 7 Exogenous BMP7 increases hepcidin expression and reduces serum iron in WT and Bmp6-/- mice. Three 

months old WT and Bmp6-/- mice received an i.v. injection of BMP7 at 500 µg/kg and 6 hours after blood and 

liver were harvested (n=5/group). Tissues were analyzed for (a) hepatic Hamp relative to Gapdh mRNA by qRT-

PCR, (b) serum iron, (c) hepatic immunohistochemical staining with hepcidin antibodies (original magnification 

x20) and (d) hepatic phosphorylated Smad 1/5/8 relative to Smad 1/5/8 protein level by Western blot at 6 hours 

following BMP7 injection in WT and Bmp6-/- mice. Results are reported as the mean ± SEM. Exact P values are 

shown.  
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Fig. 8 Treatment of Bmp6-/- mice with BMP7 (10 µg/kg) restored the bone loss following ovariectomy. Bmp6-/- 

mice were ovariectomized (n=14) at 10 weeks of age and were treated 15 days later with BMP7 (10 µg/kg, 

3x/week) for 4 months (n=7). Femur BMD values were compared to ovariectomized (n=7) and sham Bmp6-/- 

mice (n = 7). Results are reported as the mean ± SEM. Exact P values are shown. 

 

 

 


