
http://www.elsevier.com/locate/issn/00225223
http://www.sciencedirect.com/science/journal/00225223
http://dx.doi.org/10.1016/j.jtcvs.2013.10.008

http://medlib.mef.hr/2262
Management of Antiplatelet Therapy Resistance in Cardiac Surgery

Hrvoje Gasparovic, MD, PhD*, Mate Petricevic, MD*, Bojan Biocina, MD, PhD

Department of Cardiac Surgery, Clinical Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia

Running title: Antiplatelet Therapy Resistance in Cardiac Surgery

Correspondence:
Hrvoje Gasparovic, M.D., PhD, FETCS
Department of Cardiac Surgery
Clinical Hospital Center Zagreb
Kispaticeva 12
10 000 Zagreb
Croatia
Tel: +385-1-236-7517
Fax: +385-1-236-7531
E-mail: HGASPAROVIC@GMAIL.COM

Word count: 3087

Key words: antiplatelet therapy resistance; coronary artery bypass surgery; aspirin; clopidogrel; platelet function testing

*Dr. Gasparovic and Dr. Petricevic contributed equally to the manuscript
Ultramini abstract

The management of antiplatelet therapy resistance currently lacks clear outlines. This review summarizes the treatment options for patients found to have high residual platelet reactivity despite receiving the recommended anti-platelet agents. It also provides the cut-off points for platelet function tests differentiating anti-platelet therapy “responders” from “non-responders”.
The role of coronary artery bypass grafting (CABG) in the management of complex coronary artery disease has been validated through an unparalleled level of scrutiny. Improvement in patient outcomes nowadays relies on continued refinements of the surgical technique and modulation of adjuvant pharmacotherapy. Postoperative antiplatelet therapy (APT) is paramount in maintaining the revascularization benefit. Individual variability to APT, however, results in unpredictable platelet inhibition. Currently available platelet function tests (PFT) dichotomize patients into “responders” and “non-responders” based upon arbitrarily defined cut-off points. Not surprisingly, the incidence of APT resistance across the spectrum of PFTs is widely discrepant, underscoring the fact that single pathway descriptors of platelet aggregation fail to portray the complexity of the process. Thrombosis is the principal mode of failure of saphenous vein grafts (SVG) in the early postoperative period\(^1\). Reports on the increased incidence of SVG failure in patients experiencing antiplatelet agent resistance underscore the importance of recognizing this entity and intervening in a timely fashion. This review summarizes the various assay-dependent definitions of APT resistance, with their respective rates of occurrence. The clinical impact of on-therapy high residual platelet reactivity (hRPR) in the cardiac surgical arena is discussed. Finally, guidelines on individual tailoring of antiplatelet therapy in patients found to retain high on-therapy platelet reactivity are suggested herein.

Methods

The PUBMED database was searched using the following subject terms: “platelet function testing”, “antiplatelet”, “aspirin”, “clopidogrel”, “resistance” and “cardiac surgery”. Reference lists of identified publications were analyzed for additional linking studies. Priority was given to cohort studies and reviews.
Definition of anti-platelet therapy resistance

Aspirin is the most commonly used anti-platelet agent after CABG. Its use is associated with a 40% reduction in bypass graft occlusions, with the benefit being most evident in saphenous vein grafts. The incidences of SVG graft occlusions within the first year, when the impact of thrombosis is greatest, range between 7.4% and 26%. This angiographic outcome is accompanied by a 20%-30% reoccurrence of angina and a 5.9% need for repeat revascularization within the first year. The current guidelines on postoperative APT recommend the initiation of 100-325 mg of aspirin within 6 hours of surgery. In patients unable to take aspirin, 75 mg of clopidogrel is the suggested alternative.

The importance of prompt postoperative institution of aspirin is underscored by the fact that starting aspirin on the third postoperative day or later is unlikely to reflect favorably on graft patency. The one-size-fits all recommendation for perioperative APT in the current guidelines, however, disregards the individual response variability.

The term aspirin resistance denotes the drug’s inability to effectively suppress cyclooxygenase 1 (COX-1) dependent thromboxane A2 (TxA2) production. Aspirin’s failure to act on its pharmacological target originates from variable enteral absorption, COX-1 gene mutations, drug-drug interactions, patient non-compliance, accelerated post-cardiopulmonary bypass (CPB) platelet turnover and TxA2-independent platelet activation pathways. The prevalence of aspirin resistance varies widely in the literature, due to variable platelet agonists used in testing and different aspirin-related platelet function descriptors (Table 1).

Clopidogrel is an inactive prodrug that undergoes extensive conversion into its active metabolite by the hepatic cytochrome P450 3A4 (CYP3A4) enzyme. It irreversibly inhibits the P2Y12 adenosine diphosphate (ADP) receptor, which is one of the pivotal routes of platelet activation. Difficulties in elucidating the true incidence of clopidogrel resistance parallel those
for aspirin, as it is also assay-dependent. P_2Y_{12} receptor, $ABCB1$ and $CYP2C19$ genetic polymorphisms affect clopidogrel pharmacodynamics15,16. Strategies moving beyond phenotype-directed into genotype-directed tailoring of APT have become available, but currently lack validation in larger trials16. Clopidogrel’s metabolic activation is also altered by medications acting as substrates for CYP3A4. Significant reductions in the clopidogrel-induced inhibition of platelet aggregation have been noted in patients using atorvastatin and proton pump inhibitors. Conflicting data on the clinical relevance of such interactions have been published$^{17-22}$. Antiplatelet agent response is best perceived as a continuous variable. The efficacy of APT, however, may be assessed in relation to cut-off points discriminating between “resistance” and “response”, or by measuring the on-therapy percent platelet inhibition and comparing it to values obtained prior to APT. The drawback of the latter strategy is that it is affected by variability in baseline platelet reactivity. In contrast, strict cut-off values are invariably arbitrarily defined, but do allow for comparing outcomes in a binary model. The definition of antiplatelet agent resistance remains a moving target. Lordkipanidze et al compared six different platelet function tests to determine the prevalence of aspirin resistance, and found a poor mutual correlation between individual tests23. A succinct overview of the cut-off points defining antiplatelet agent resistance using different PFTs is presented in Table 1. Distinguishing between cardiac surgical patients in whom APT resistance is permanent from those in whom it may be a temporary phenomenon may hold practical value. The distinction between the two can be made by comparing preoperative to postoperative PFT results. In patients found to have on-therapy hRPR preoperatively, the resistance is likely a permanent one. Conversely, adequate preoperative platelet inhibition followed by early postoperative hRPR may suggest that the phenomenon is transient in nature. Our group has shown a consistent increase in postoperative platelet reactivity
evaluated with aggregometry in comparison to preoperative values24, which is suggestive of heightened platelet reactivity induced by surgery.

\textit{Clinical impact of anti-platelet therapy resistance}

Aspirin-resistant TxA2 synthesis has been found to elevate the risk of stroke, myocardial infarction and cardiovascular death in patients with cardiovascular disease25. A graded increase in the aforementioned risk was observed with each increasing quartile of urinary 11-dehydro thromboxane B2 (UTxB2), which is a metabolic surrogate of TxA2 activity25.

Investigators in the CRYSSA (prevention of Coronary arteRY bypaSS occlusion After off-pump procedures) trial noted an alarming correlation between graft occlusion and antiplatelet therapy resistance (RR 3.6, 95\% CI 2.5 to 6.9; \(P < 0.001 \))5. Conversely, synergistic aspirin- and clopidogrel-induced platelet inhibition was found to predict SVG patency (RR 5.1, 95\% CI 1.4 to 16.3; \(P < 0.01 \))5. The link between SVG occlusion and platelet hyperreactivity on aspirin was reported as the secondary objective of the Reduction in Graft Occlusion Rates (RIGOR) study13. A higher incidence of early SVG occlusion was found in patients taking aspirin who had increased levels of UTxB2 and shear-dependent platelet activation13.

Clopidogrel resistance has also been found to be clinically significant by several investigators. Adverse cardiovascular events adjudicated at 6-months were found to be more common in clopidogrel-resistant patients undergoing primary angioplasty for acute myocardial infarction26. High platelet reactivity to adenosine-diphosphate (ADP) on dual anti-platelet therapy (dAPT) increased cardiovascular mortality (HR 2.55, [95\% CI 1.08 to 6.07], \(P < 0.034 \)) and nonfatal myocardial infarction (HR 3.36, [95\% CI 1.49 to 7.58], \(P < 0.004 \)) at
12-month follow-up in a similar clinical setting27. A more comprehensive overview of the clinical impact of APT resistance is provided in Table 1. Clopidogrel cessation is advocated in anticipation of elective cardiac surgery in order to minimize perioperative blood loss10. One must recognize that this, however, is potentially hazardous as it may induce a rebound prothrombotic and proinflammatory state28. Mahla et colleagues proved that clopidogrel can safely be continued up to surgery provided that residual on-therapy platelet reactivity evaluated by thromboelastography remained high29. Analogously, Di Dedda et al recently documented that 32\% of patients scheduled for cardiac surgery retained hRPR on clopidogrel30. These observations again add credence to APT monitoring, as it may directly influence the preoperative discontinuation of clopidogrel and possibly lead to a revision of current guidelines.

\textit{Management options for antiplatelet agent resistance}

With the problem of antiplatelet agent resistance lacking a clear outline and definition, it is not surprising that guidelines for its management remain to be formed. While a large proportion of the evidence examining the impact of APT resistance is either observational in nature or comes from the non-surgical arena, there are two prospective randomized trials that will provide more data on the augmentation of antiplatelet therapy in drug-resistant CABG patients31,32. The former31 has reached the data analysis stage, while the latter32 is still recruiting patients. Coronary bypass grafts may be especially vulnerable in the immediate postoperative period, and there is growing evidence that antiplatelet therapy resistance should not be ignored. The first step in individualized tailoring of platelet inhibition should be platelet function testing at approximately 7 days of APT initiation (Figure 1). Once hRPR is recognized, extrinsic factors such as patient non-compliance, drug interactions or suboptimal glucose and cholesterol regulation should be ruled out.
As antiplatelet drug resistance may be a temporary manifestation, one course of action is to re-evaluate the drug effect without changing the current platelet inhibition regime. Within seven days both aspirin and unbolused clopidogrel reach steady state drug levels. We, therefore, recommend repeating platelet function testing 7 days after any PFT result that is outside the desired therapeutic window.

A significant proportion of patients recognized as clopidogrel resistant 24 hours after its institution were found to respond to the drug when re-evaluated at 30 days33, 34. Likewise, the proportion of CABG patients found to be aspirin resistant is inversely proportional to the time elapsed between its assessment and the procedure itself35, 36. This point again brings into focus the importance of isolating patients with permanent from those with transient postoperative APT resistance. In the event that a follow-up evaluation of platelet function shows persistence of low-responsiveness, different lines of management should be explored.

An effective approach to antiplatelet therapy resistance is to increase the drug dose. In diabetic patients found to be hyporesponsive to 100 mg of aspirin, increasing the dose to 300 mg led to superior platelet inhibition (Platelet Function Analyzer closure time increased from 170±45 to 229±75 seconds, $P<0.001$)37. Increased loading and maintenance doses of clopidogrel have also been found to surmount the resistance to lower-dose therapy15, 38. Doubling the dose of clopidogrel in patients found to be non-responders to 75 mg, effectively inhibited platelets in 60% of patients39. Neubauer et al reduced the incidence of clopidogrel resistance from 23.6% to 5% by modification of the administered dose based on an aggregometer-guided algorithm38. The conversion of non-responders using this strategy, however, remains unpredictable, which emphasizes the need for re-evaluating the effectiveness of platelet inhibition after the implemented dose change39. The BOCLA-plan (Bochum Clopidogrel and Aspirin Plan) incorporating a “test and treat” strategy effectively eliminated aspirin resistance by dose modification and subsequent platelet function testing40.
Of the 19.4% patients found to be low-responsive to 100 mg of aspirin, 94.6% were converted to responders by increasing the dose to 300 mg. The remaining 5.4% received effective platelet inhibition by further increasing the dose to 500 mg of aspirin. It is important, however, to acknowledge the potential of high-dose aspirin to worsen endothelial-mediated arterial dilatation. A similar protocol was implemented for the 30.8% of patients found to be resistant to 75 mg of clopidogrel. Increasing the dose to 150 mg, in line with the predefined BOCLA-plan, induced effective platelet inhibition in 69% of previously resistant patients.

Finally, an attractive solution to the problem of hRPR on one platelet inhibitor is to either add a different agent in order to induce an additive effect, or to substitute the original drug altogether. The different mechanisms of platelet inhibition targeted by aspirin and thienopyridines allow for cumulation of their individual anti-aggregational effects. Mannacio et al showed that dAPT effectively overcame single drug resistances, with a subsequent reduction in SVG occlusion (7.4% vs. 13.1%; \(P=0.04 \)). Patients randomized to dAPT in the CRYSSA trial experienced similar rates of both minor (2% vs. 1.3%, \(P=0.5 \)) and major bleeding episodes (1.3% vs. 1.3%, \(P=1.0 \)) in comparison to the aspirin-monotherapy group. The safety of dAPT was corroborated by similar chest tube outputs in both treatment arms (115±80 ml in the aspirin group vs. 125±70 ml in the dAPT group \(P=0.2 \)). The administration of clopidogrel on the background of aspirin therapy in the early postoperative period did not increase the rate of re-exploration or transfusion in a study by Chan et al. Commonly utilized protocols include starting dAPT when chest tube drainage has been \(\leq 50 \) ml for 2 hours. We would recommend exercising caution in restarting clopidogrel, however, in patients on preoperative dAPT with documented profound ADP inhibition. Our group has documented that preoperative Multiplate ASPI test values <20 area under the curve units (AUC) and ADP test <73 AUC predicted higher postoperative chest tube output.
While clopidogrel and aspirin account for the most commonly used combination of antiplatelet drugs, the potential advantages of novel agents may lead to a future revision of that paradigm. New generation P2Y_{12} inhibitors are less susceptible to genetic polymorphisms.

Clopidogrel requires two CYP-mediated oxidative steps to reach its active metabolite, while prasugrel requires only one. It initiates faster and more potent platelet inhibition, with less inter-patient response variability than its predecessor. The TRITON-TIMI 38 study (Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel–Thrombolysis In Myocardial Infarction 38) demonstrated prasugrel’s superiority over clopidogrel in the reduction of major adverse cardiovascular events (MACE) in patients with acute coronary syndromes (ACS) (HR 0.81; [95% CI, 0.73 to 0.90]; P<0.001). The reduction in MACE was offset by an increased risk of bleeding. The post hoc analysis of patients in the prasugrel treatment arm who underwent CABG, mirrored the general study population’s increased bleeding risk. Overall mortality, however, was significantly lower in the prasugrel than the clopidogrel CABG cohort despite comparable risk profiles (adjusted OR: 0.26 [95% CI, 0.08 to 0.85]; P=0.025). A potential problem in interpreting these results is that all-cause mortality was as high as 8.67% in the clopidogrel cohort, which had a mean EuroSCORE of only 3.6±3.2. This caveat is amplified by the fact that EuroSCORE may even overestimate CABG mortality. Nevertheless, prasugrel’s highly effective platelet inhibition and very low incidence of non-responsiveness make it a suitable candidate for patients found to be resistant to prior antiplatelet therapy. In the BOCLA study, patients found to be clopidogrel resistant to even an augmented dosing regime, benefited from the addition of prasugrel in achieving the targeted antiplatelet effect.

Ticagrelor is absorbed as an active agent, and is therefore unaffected by the idiosyncrasies of intrinsic biotransformation. Its prompt and reversible P2Y_{12} inhibition was responsible for a significant reduction in adverse events in its direct comparison to clopidogrel.
in the Study of Platelet Inhibition and Patient Outcomes (PLATO) (HR 0.84; [95% CI, 0.77 to 0.92]; \(P<0.001\))\(^{48}\). The ticagrelor cohort had a 22% relative reduction in mortality\(^{48}\). The incidence of bleeding in the CABG subgroup was not affected by ticagrelor, presumably due to the reversible nature of its P\(_{2}Y_{12}\) inhibition\(^{48}\). It has already been shown to be useful in upgrading antiplatelet therapy in patients found to be clopidogrel hyporesponders\(^{49}\). In the Response to Ticagrelor in Clopidogrel Nonresponders and Responders and Effect of Switching Therapies (RESPOND) trial it has provided more uniform and enhanced platelet inhibition in comparison to clopidogrel, practically eliminating on-therapy hRPR\(^{49}\).

Prompt induction of platelet inhibition can be achieved with cangrelor. It is a direct-acting P\(_{2}Y_{12}\) inhibitor that immediately suppresses platelet aggregation\(^{50}\). Its effect is quickly reversible upon the drug’s discontinuation\(^{50}\). Cangrelor’s intravenous mode of administration overcomes the variability in enteral absorption and bioavailability seen in patients with acute hemodynamic compromise\(^{51}\). Additionally, its very short half-life (3 to 5 minutes) allows for precise bridging of anti-platelet therapy in patients scheduled for elective cardiac surgery, without increasing the risk of major bleeding\(^{52}\). While the pharmacokinetic properties of cangrelor make it unsuitable for long-term management of APT resistance, its potential applicability in the acute perioperative setting warrants mentioning.

Redundancy and parallel activation pathways characterize clot formation. The role of thrombin in the process of thrombosis goes beyond the generation of fibrin, as it is a very potent platelet agonist. Its platelet activation effects are mediated by protease-activated receptor PAR-1\(^{53}\). Vorapaxar is a novel antiplatelet agent that inhibits platelet aggregability by targeting PAR-1. In the Thrombin Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events (TRA 2P)–Thrombolysis in Myocardial Infarction (TIMI) 50 trial, vorapaxar reduced the incidence of death or adverse ischemic events over placebo on the background of standard therapy (HR 0.87; [95% CI, 0.80 to 0.94]; \(P<0.001\))\(^{53}\). It
increased the risk of bleeding, including intracranial hemorrhage. Exploiting alternative routes of platelet inhibition may be reasonable in patients found to be resistant to the more commonly targeted platelet receptors.

Since the activation of clopidogrel is dependent upon CYP3A4, it stands to reason that pharmacologic induction of this enzyme’s metabolic activity may convert clopidogrel non-responders into responders. Co-administration of rifampin and clopidogrel has been used to explore and prove this concept in healthy volunteers. Whether this approach is of any value in the cardiac surgical population is as of yet unknown.

Discussion

Despite the absence of an all-encompassing method for defining antiplatelet response, there is sufficient evidence to support wider dissemination of tools designed to quantify on-therapy platelet reactivity. Strategies utilizing platelet function tests in order to guide transfusion therapy, reduce bleeding and tailor antiplatelet therapy are gaining momentum in the modern cardiac surgical practice. Platelet aggregability after cardiac surgery is inconsistent over the early postoperative period. Its unpredictable nature stems from the integration of several opposing influences. The effects of postoperative platelet depletion and iatrogenic platelet inhibition are counterbalanced by accelerated post-CPB platelet turnover. Longitudinal follow-up of platelet reactivity is, therefore, a useful adjunct to standard postoperative protocols aiming to achieve optimal patient outcomes.

Antiplatelet therapy resistance may offset the benefits of surgical myocardial revascularization. Point-of-care platelet function tests provide timely information regarding residual platelet reactivity. Unfortunately, individual PFTs provide data that is not always reciprocated by other tests. This brings into focus the need for standardization and clinical
validation of each test. It is unlikely that different PFTs will ever provide completely
interchangeable results because of the large variability of platelet activation pathways that are
being tested. Recognizing the impact of APT resistance, however, should serve as an impetus
for the definition of its management algorithms. While APT resistance after cardiac surgery
may be a transient phenomenon, it occurs during the period when graft patency is most
vulnerable. Dual antiplatelet therapy or incremental drug increases in conjunction with regular
platelet function testing are useful in overcoming this problem. The contemporary expansion
of the antiplatelet drug armamentarium will likely translate into superior outcomes in the
clinical domain. The benefits of enhanced platelet inhibition must be balanced against an
increased risk of bleeding, which is bound to be its unwanted, yet inevitable, corollary.

In summary, we advocate the use of point-of-care platelet function testing, and
tailoring of antiplatelet therapy. Prospective accumulation of data on the clinical impact of
such strategies is sorely needed in order for them to become validated on a larger scale.
References

Table 1. Antiplatelet therapy resistance: assay-specific definitions, prevalence and clinical impact

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient population</th>
<th>Aspirin resistance</th>
<th>Clopidogrel resistance</th>
<th>Cut-off value for APT resistance</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannacio et al(^5)</td>
<td>OPCAB pts (n=300)</td>
<td>32.6% (5 days after treatment initiation)</td>
<td><10 min</td>
<td>22%* (5 days after treatment initiation)</td>
<td>Aspirin reaction units >550</td>
</tr>
<tr>
<td>Sambu et al(^5)</td>
<td>Stent thrombosis pts (n=39)</td>
<td>28% (at inclusion)</td>
<td>15 min</td>
<td>67%† (at inclusion)</td>
<td><50% TEG percent platelet inhibition</td>
</tr>
<tr>
<td>Gluckman et al(^13)</td>
<td>CABG pts (n=229)</td>
<td>5% (at 3 days postoperatively); 0.9% (at 6 mo postoperatively)</td>
<td>7 min</td>
<td>Not reported</td>
<td>>1 Ohm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16% (at 3 days postoperatively); 10% (at 6 mo postoperatively)</td>
<td><10 min</td>
<td>Not reported</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64% (at 3 days postoperatively); 12% (at 6 mo postoperatively)</td>
<td>5-8 min</td>
<td>Not reported</td>
<td>CEPI clotting time (CT) ≤193 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73% (at 3 days postoperatively); 31% (at 6 mo postoperatively)</td>
<td>N/A</td>
<td>Not reported</td>
<td>UTxβ₂ ≥400 pg/mg creatinine</td>
</tr>
<tr>
<td>Study</td>
<td>Type of Study</td>
<td>Patient Characteristics</td>
<td>Assay and Details</td>
<td>Platelet Aggregation</td>
<td>ADP Aggregation</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Petricevic et al(^{24})</td>
<td>CABG pts</td>
<td>n=99</td>
<td>31.3% (preoperatively); 46.5% (at 4 days postoperatively) ASPI test Multiple platelet mapping (Dynabyte Gmbh, Munich, Germany) 9 min Not reported Not reported N/A ≥30 AUC(^{4}) Not reported Not reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preisman et al(^{58})</td>
<td>CABG pts</td>
<td>n=59</td>
<td>44% (preoperatively) TEG platelet mapping (Haemoscope Corporation, Niles, IL, USA) up to 1 hour 85% (preoperatively) TEG platelet mapping (Haemoscope Corporation, Niles, IL, USA) up to 1 hour AA induced platelet activation >50% ADP induced platelet activation >50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lordkipanidze et al(^{23})</td>
<td>Stable coronary disease n=201</td>
<td></td>
<td>4% LTA (AA) N/A 10.3-51.7% LTA (ADP) N/A 18% Whole blood aggregometry (Chronolog) 7 min Not reported Not reported N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kempfert et al(^{59})</td>
<td>CABG/OPCAB pts, n=59</td>
<td></td>
<td>28.8% (preoperatively); 49.2% (at 5 days postoperatively) Turbidimetric aggregometry (PAP-4, Berlin, Germany) N/A Not reported Not reported N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Procedure</td>
<td>Patient Number</td>
<td>Aggregation Profiler/Method</td>
<td>Time</td>
<td>ADP Test</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>Bednar et al<sup>60</sup></td>
<td>CABG/OPCAB</td>
<td>(n=80)</td>
<td>PAP-4 Platelet Aggregation Profiler (BioBata Corp)</td>
<td>N/A</td>
<td>Not reported</td>
</tr>
<tr>
<td>Poston et al<sup>61</sup></td>
<td>OPCAB</td>
<td>(n=76)</td>
<td>TEG platelet mapping (Haemoscope, Niles, IL)</td>
<td>up to 1 hour</td>
<td>Not reported</td>
</tr>
<tr>
<td>Di Dedda et al<sup>30</sup></td>
<td>Cardiac surgery</td>
<td>(n=344)</td>
<td>Whole blood aggregometry (Chronolog , Havertown, PA)</td>
<td>7 min</td>
<td>Not reported</td>
</tr>
</tbody>
</table>

Non significant relationship between platelet aggregation studies and chest tube discharge in 24 hours was noted

Poston et al

- **OPCAB pts (n=76)**
 - 3% preoperatively; 13.2% postoperatively (at 3 days postoperatively)
 - TEG platelet mapping (Haemoscope, Niles, IL)
 - Whole blood aggregometry (Chronolog, Havertown, PA)
 - 7 min

Not reported

N/A

Not reported

>1 SD above the normal value

Not reported

%MA_{MA} (TEG) higher in pts with occluded grafts (55±22 vs. 22±17, P=0.05); WBA %Ohm 6 min-low vs. high dose (69±25 vs. 35±20, P=0.05) higher in pts with occluded grafts

Di Dedda et al

- **Cardiac surgery pts (n=344)**
 - Not reported
 - ADP test Multiplate (Dynabyte GmbH, Munich, Germany)
 - 9 min

Not reported

>60% of lower limit of normal range (last clopidogrel dose within 1 day); ADP test >32 U.

>70% of lower limit of normal range (last clopidogrel dose 2 days); ADP test >37 U.

>80% of lower limit of normal range (last clopidogrel dose 3 days prior to the test); ADP test >43 U.

Platelet aggregation within normal range (>53 U); last dose of clopidogrel >4 days

The last ADP test result before the operation was significantly associated (p=0.002) with postoperative bleeding and the need for postoperative platelet concentrate transfusions; Thrombotic events not reported
Abbreviations: AA – arachidonic acid; ADP – adenosine diphosphate; CABG – coronary artery bypass grafting; CEPI – collagen/epinephrine agnosts; LTA – light transmittance aggregometry; OPCAB – off pump coronary artery bypass; POC – point-of-care; PFA – platelet function analyzer; TEG – thromboelastography

*In CRYSSA 12.6% of patients were resistant to both aspirin and clopidogrel
†In CREST 26% of patients were resistant to both aspirin and clopidogrel
‡Multiple WBA provides 3 parameters: velocity, area under the curve (AUC) and percent platelet inhibition. AUC provides the greatest diagnostic yield. Several studies report cutoff values delineating aspirin resistance using Multiplate. Cut-off values were adjusted for number of days following preoperative clopidogrel discontinuation and expressed as percentage of the normal range value of ADP test as indicated by manufacturer (53-122 U (AUC))

Gurbel et al investigated the prognostic value of thromboelastography (MAadp) in assessment of ischemic events among patients undergoing PCI. MAadp >47 mm was found to be the best predictor of ischemic events (receiver operating curve, AUC=0.84 [95% CI 0.78 – 0.89, p < 0.0001]).
Figure 1. Algorithm summarizing management options for patients with documented antiplatelet therapy resistance.

PFT, platelet function testing; IPA, inhibition of platelet aggregation; hRPR, high residual platelet reactivity; APA, antiplatelet agent; APT, antiplatelet therapy
Patient on aspirin or clopidogrel

- Adequate IPA
- hRPR

Exclude:
- Non-compliance
- Drug-drug interaction
- Poor glucose control
- Hypercholesterolemia

- Maintain current APT
- Adequate IPA
- hRPR

Watchful waiting

Increase APA dose

Add another APA

- Adequate IPA
- hRPR

Additional APA
- Clopidogrel
- Prasugrel
- Ticagrelor
- Vorapaxar

- Adequate IPA
- hRPR

Additional APA
- Aspirin
- Prasugrel
- Ticagrelor
- Vorapaxar

- Adequate IPA
- hRPR